

HQE Performance Santé

Etude sur les premiers ordres de grandeur des impacts environnementaux des établissements de santé

Rapport final Juillet 2016

Avec le soutien technique de :

Avec le soutien financier de :

Association HQE – France GBC 4, avenue du Recteur Poincaré - 75016 Paris Tél. 01 40 47 02 82 - Fax 01 40 47 04 88 www.hqegbc.org

Modélisation, revue critique et capitalisation des ACV de bâtiments de santé

Anne-Sophie PERRISSIN-FABERT, Nathalie SEMENT

Association HQE - France GBC

Sophie LECADRE, Louis MARHIC, Maxime HAVARD

AIA Studio Environnement

Marine VESSON, Francis GRANNEC

CSTB

Direction Energie Environnement Division Environnement et Ingénierie du Cycle de vie

Table des matières

1.	Introduction	. 4
2.	CADRE METHODOLOGIQUE DES ACV	. 5
	2.1 Indicateurs environnementaux calculés	. 5
	2.2 Périmètre	. 6
	2.2.1 Calcul du contributeur– Produits de construction et équipements	. 6
	2.2.2 Calcul du contributeur ENERGIE - Consommations d'énergie immobilières	
	2.2.3 Calcul du contributeur ENERGIE - Consommations d'énergie mobilières	. 8
	2.2.4 Calcul du contributeur- Consommations et rejets d'eau	
	2.2.5 Calcul du contributeur– Chantier	
	2.3 Base de données	
	2.4 ELODIE	11
3.	PROCEDURE DE REVUE CRITIQUE ACV	12
	3.1 Les acteurs	12
	3.1.1 Modélisateurs	12
	3.1.2 Vérificateurs	
	3.2 La procédure	12
4.	DESCRIPTION DE L'ECHANTILLON	14
	4.1 Nature des projets	14
5.	Analyse statistique	16
	5.1 Tous contributeurs confondus	16
	5.1.1 Médianes empilées	16
	5.1.2 Boxplots par contributeur	
	5.2 Contributeur Consommations d'énergie	27
	5.3 Contributeur Produits et équipements	
	5.3.1 résultats décomposés par regroupement de lots techniques	
	5.3.2 résultats décomposés par lots techniques	
	5.4 Contributeur Eau	
	5.5 Contributeur Chantier	38
6.	DISCUSSION DES RESULTATS	
	6.1 Evaluation de l'échantillon d'étude	39
	6.2 Evaluation de la qualité des modélisations	39
	6.2.1 Les données relatives aux projets	39
	6.2.2 Les données environnementales	40
7.	Conclusion	41
8.	ANNEXE 1 : DESCRIPTIFS DES OPERATIONS MODELISEES	42
	8.1 Polyclinique du Parc Rambot – AIX EN PROVENCE	42
	8.2 Clinique Belharra - BAYONNE	
	8.3 Polyclinique Bordeaux Nord Aquitaine - BORDEAUX	44
	8.4 Maternité Saint Joseph - PARIS	45
	8.5 Oréliance - ORLEANS	46
	8.6 PFME - METZ THIONVILLE	47

	8.7 Polyclinique du Parc - TOULOUSE	
	8.8 Hôpital Privé de Savoie - ANNEMASSE	
	8.9 Clinique ARAGO - PARIS	
	8.10 CH Antoine Gayraud - CARCASSONNE	
	8.11 Hôpital Privé de Bourgogne - DIJON	
	8.12 PFPE - CHOLET	
	8.13 Pôle Sanitaire de l'Ouest - SAINT PAUL La Réunion	
	8.14 CH Marc Jacquet - MELUN	
	8.15 Hôpital Robert Schuman Hébergement - METZ	
	8.16 Hôpital Mutualiste des Côtes d'Armor - SAINT BRIEUC	
	8.17 Clinique Saint Côme - COMPIEGNE	
	8.18 CHU Plateau Technique - NANTES	
	8.19 Clinique Rhéna - STRASBOURG	
	ANNEXE 2 : REGLES HQE PERFORMANCE SANTE	
	Introduction	
2.	D EFINITION DU CHAMP DE L'ETUDE ACV D'UN BATIMENT HOSPITALIER	64
	2.1. Equivalent fonctionnel, description du système	64
	2.2. Frontières du système	
	2.2.1. Périmètre physique et temporel pris en compte	
	2.2.2. Contributeurs considérés	
	2.2.3. Indicateurs environnementaux calculés	.67
_	••	
3.	METHODE DETAILLEE DU CALCUL DES IMPACTS	
3.	3.1. Contributeur COMPOSANTS	68
3.	3.1. Cadre d'évaluation	.68
3.	3.1. Cadre d'évaluation	.68 .68
3.	3.1. Contributeur COMPOSANTS	.68 .68
3.	3.1.1. Cadre d'évaluation	.68 .68 .68 .69
3.	3.1. Contributeur COMPOSANTS 3.1.1. Cadre d'évaluation 3.1.2. Renseignement des quantitatifs du projet 3.1.3. Renseignement des données environnementales 3.1.4. Modélisation des composants dépourvus de profil environnemental 3.1.5. Durée de vie des produits de construction et équipements 3.1.6. Allocation entre entités d'usages	.68 .68 .68 .69
3.	3.1. Cadre d'évaluation	.68 .68 .69 .69
3.	3.1. Cadre d'évaluation	.68 .68 .69 .69 .69
3.	3.1. Cadre d'évaluation	.68 .68 .69 .69 .69
3.	3.1. Contributeur COMPOSANTS 3.1.1. Cadre d'évaluation 3.1.2. Renseignement des quantitatifs du projet 3.1.3. Renseignement des données environnementales 3.1.4. Modélisation des composants dépourvus de profil environnemental 3.1.5. Durée de vie des produits de construction et équipements 3.1.6. Allocation entre entités d'usages 3.2. Contributeur ENERGIE 3.2.1. Cadre d'évaluation 3.2.2. Renseignement des quantitatifs du projet	68 .68 .68 .69 .69 .71 .71
3.	3.1. Cadre d'évaluation	.68 .68 .69 .69 .71 .72 .74
3.	3.1. Contributeur COMPOSANTS 3.1.1. Cadre d'évaluation 3.1.2. Renseignement des quantitatifs du projet 3.1.3. Renseignement des données environnementales 3.1.4. Modélisation des composants dépourvus de profil environnemental 3.1.5. Durée de vie des produits de construction et équipements 3.1.6. Allocation entre entités d'usages 3.2. Contributeur ENERGIE 3.2.1. Cadre d'évaluation 3.2.2. Renseignement des quantitatifs du projet 3.3. Contributeur EAU 3.3.1. Cadre d'évaluation 3.3.2. Renseignement des quantitatifs du projet 3.4. Contributeur CHANTIER	.68 .68 .69 .69 .71 .71 .72 74 .74
3.	3.1. Cadre d'évaluation	.68 .68 .69 .69 .71 .71 .74 .74
	3.1. Cadre d'évaluation 3.1.2. Renseignement des quantitatifs du projet. 3.1.3. Renseignement des données environnementales 3.1.4. Modélisation des composants dépourvus de profil environnemental 3.1.5. Durée de vie des produits de construction et équipements 3.1.6. Allocation entre entités d'usages 3.2. Contributeur ENERGIE 3.2.1. Cadre d'évaluation 3.2.2. Renseignement des quantitatifs du projet. 3.3. Contributeur EAU 3.3.1. Cadre d'évaluation 3.2.2. Renseignement des quantitatifs du projet. 3.4. Contributeur CHANTIER 3.4.1. Cadre d'évaluation 3.4.2. Renseignement des quantitatifs des projets	.68 .68 .69 .69 .71 .71 .74 .74 .75
4.	3.1. Cadre d'évaluation 3.1.2. Renseignement des quantitatifs du projet. 3.1.3. Renseignement des données environnementales 3.1.4. Modélisation des composants dépourvus de profil environnemental. 3.1.5. Durée de vie des produits de construction et équipements 3.1.6. Allocation entre entités d'usages 3.2. Contributeur ENERGIE 3.2.1. Cadre d'évaluation 3.2.2. Renseignement des quantitatifs du projet. 3.3. Contributeur EAU 3.3.1. Cadre d'évaluation 3.3.2. Renseignement des quantitatifs du projet. 3.4. Contributeur CHANTIER 3.4.1. Cadre d'évaluation 3.4.2. Renseignement des quantitatifs des projets APPLICATION DES REGLES HQE PERFORMANCE SANTE 2015 AIA.	.68 .68 .69 .69 .71 .72 .74 .74 .75 .75
4.	3.1. Cadre d'évaluation 3.1.2. Renseignement des quantitatifs du projet 3.1.3. Renseignement des données environnementales 3.1.4. Modélisation des composants dépourvus de profil environnemental 3.1.5. Durée de vie des produits de construction et équipements 3.1.6. Allocation entre entités d'usages 3.2. Contributeur ENERGIE 3.2.1. Cadre d'évaluation 3.2.2. Renseignement des quantitatifs du projet 3.3. Contributeur EAU 3.3.1. Cadre d'évaluation 3.2.2. Renseignement des quantitatifs du projet 3.4. Contributeur CHANTIER 3.4.1. Cadre d'évaluation 3.4.2. Renseignement des quantitatifs des projets APPLICATION DES REGLES HQE PERFORMANCE SANTE 2015 AIA	68 .68 .69 .69 .71 .72 .74 .74 .75 .75
4.	3.1. Contributeur COMPOSANTS 3.1.1. Cadre d'évaluation 3.1.2. Renseignement des quantitatifs du projet 3.1.3. Renseignement des données environnementales 3.1.4. Modélisation des composants dépourvus de profil environnemental 3.1.5. Durée de vie des produits de construction et équipements 3.1.6. Allocation entre entités d'usages 3.2. Contributeur ENERGIE 3.2.1. Cadre d'évaluation 3.2.2. Renseignement des quantitatifs du projet 3.3. Contributeur EAU 3.3.1. Cadre d'évaluation 3.3.2. Renseignement des quantitatifs du projet 3.4. Contributeur CHANTIER 3.4.1. Cadre d'évaluation 3.4.2. Renseignement des quantitatifs des projets APPLICATION DES REGLES HQE PERFORMANCE SANTE 2015 AIA. ANNEXES 5.1. Répartition en lots du contributeur Composants	68 .68 .69 .69 .71 .72 .74 .74 .75 .75 .75
4.	3.1. Cadre d'évaluation 3.1.2. Renseignement des quantitatifs du projet 3.1.3. Renseignement des données environnementales 3.1.4. Modélisation des composants dépourvus de profil environnemental 3.1.5. Durée de vie des produits de construction et équipements 3.1.6. Allocation entre entités d'usages 3.2. Contributeur ENERGIE 3.2.1. Cadre d'évaluation 3.2.2. Renseignement des quantitatifs du projet 3.3. Contributeur EAU 3.3.1. Cadre d'évaluation 3.2.2. Renseignement des quantitatifs du projet 3.4. Contributeur CHANTIER 3.4.1. Cadre d'évaluation 3.4.2. Renseignement des quantitatifs des projets APPLICATION DES REGLES HQE PERFORMANCE SANTE 2015 AIA	68 .68 .69 .69 .71 .72 .74 .74 .75 .75 .75

1. INTRODUCTION

Le programme d'innovation collaborative HQE Performance vise à disposer d'indicateurs communs qui permettent de définir et d'évaluer, de façon universelle, un bâtiment durable. Dans ce cadre, AlA Studio Environnement et l'Association HQE – France GBC, avec le soutien de l'ADEME, ont réalisé l'Analyse de Cycle de Vie (ACV) de 19 bâtiments de Santé.

Les modélisations et études ACV ont été menées par AIA Studio Environnement avec le logiciel ELODIE. **Le CSTB**, missionné par l'Association HQE – France GBC, a quant à lui réalisé les revues critiques de ces ACV, participé à la formation des modélisateurs et permis l'amélioration des études ACV.

Le présent rapport synthétise les revues critiques des ACV réalisées dans ce cadre, et présente les résultats obtenus en termes d'impacts environnementaux.

Le cadre méthodologique retenu est, dans un premier temps rappelé, ainsi que les outils et données utilisés. Le processus de revue critique, puis le panel des bâtiments étudiés est ensuite présenté. L'analyse statistique des résultats observés à différentes échelles (bâtiments, contributeurs, lots techniques) est détaillée par la suite. La conclusion de cette étude est accompagnée de diverses réserves quant à l'utilisation et l'interprétation des résultats observés.

2. CADRE METHODOLOGIQUE DES ACV

Ce chapitre décrit **la méthodologie** suivie pour les analyses environnementales réalisées par AIA Environnement pour les bâtiments de santé, basée sur l'analyse de cycle de vie. Pour rappel, celle-ci s'appuie sur la méthodologie « HQE Performance Règles d'application pour l'évaluation environnementale des bâtiments neufs » utilisée dans le cadre des expérimentations HQE performance¹. Pour les éléments nouveaux, propres aux bâtiments de santé, une méthodologie complémentaire a été développée.

2.1 INDICATEURS ENVIRONNEMENTAUX CALCULÉS

Les indicateurs environnementaux présentés dans ce rapport sont :

- Consommation d'énergie primaire totale
- Consommation d'énergie non renouvelable
- Changement climatique
- Consommation d'eau
- Production de déchets non dangereux
- Production de déchets dangereux

Remarque:

L'indicateur d'énergie primaire totale représente la somme de l'énergie non renouvelable et de l'énergie renouvelable ou de l'énergie procédé et de l'énergie matière.

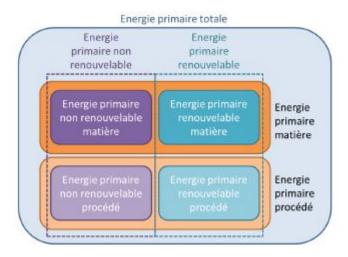


Figure 1: Schéma de représentation des composantes de l'énergie primaire totale

L'indicateur de déchets non dangereux exploité dans l'ensemble de ce document, et conforme aux normes NF EN 15804² et NF EN 15978³, est la somme des indicateurs de déchets inertes et déchets non dangereux de la norme NF P01-010⁴.

¹ ASSOCIATION HQE. HQE Performance Règles d'application pour l'évaluation environnementale des bâtiments neufs. Version du 14/06/2012, pour le test HQE Performance 2012. Paris, 2012, 38 p. www.assohqe.org

² AFNOR (2012) Norme NF EN 15804. Contribution des ouvrages de construction au développement durable - Déclarations environnementales sur les produits - Règles régissant les catégories de produits de construction ³ AFNOR (2012) Norme NF EN 15078. Contribution des ouvrages de construction au développement durable

³ AFNOR (2012). Norme NF EN 15978. Contribution des ouvrages de construction au développement durable - Evaluation de la performance environnementale des bâtiments - Méthode de calcul. Afnor

⁴ AFNOR (2004) Norme NF P01-010. Qualité environnementale des produits de construction, Déclaration environnementale et sanitaire des produits de construction.

Pour chaque indicateur, les résultats sont affichés pour l'ensemble du cycle de vie et en faisant apparaître les proportions des contributeurs modélisés (s'il y a lieu).

2.2 PÉRIMÈTRE

L'évaluation porte sur le cycle de vie complet du projet hospitalier. Le périmètre physique choisi comprend la mise à disposition du bâtiment et de sa parcelle (sa construction et le maintien des conditions fonctionnelles permettant son utilisation) et l'exercice des activités qu'il abrite (dans la limite des données environnementales disponibles).

Les calculs environnementaux sont réalisés pour une période d'étude de référence de 50 ans.

L'analyse environnementale est réalisée par contributeurs. Les contributeurs pris en compte sont :

- Contributeur ENERGIE :
 - Consommations et production d'énergie immobilières
 - couvertes par la réglementation thermique
 - hors RT
 - Consommations d'énergie mobilières
- Contributeur COMPOSANT :
 - Produits de construction et équipements
- Contributeur EAU :
 - Consommations et rejets d'eau
- Contributeur CHANTIER
 - Consommations et rejets durant la phase de chantier du projet

2.2.1 CALCUL DU CONTRIBUTEUR- PRODUITS DE CONSTRUCTION ET EQUIPEMENTS

2.2.1.1 Frontières d'évaluation

Le périmètre d'étude comprend tous les ouvrages de bâtiment et génie civil situés sur la parcelle ainsi que les éléments dépendant de l'activité du bâtiment.

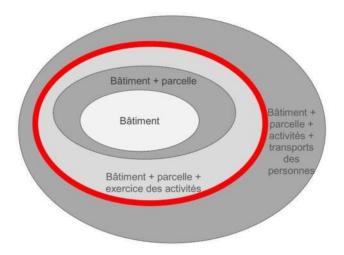


Figure 2: Schéma du périmètre pris en compte dans l'étude

Le découpage en lots à retenir pour la description du bâtiment est la suivante :

- 1. VRD (Voirie et Réseaux Divers) et aménagements extérieurs de la parcelle
- 2. Fondations et infrastructure
- 3. Superstructure Maçonnerie
- 4. Couverture Etanchéité Charpente Zinguerie
- 5. Cloisonnement Doublage Plafonds suspendus Menuiseries intérieures
- 6. Façades et menuiseries extérieures
- 7. Revêtements des sols, murs et plafonds Chape Peintures Produits de décoration
- 8. CVC (Chauffage Ventilation Refroidissement eau chaude sanitaire)
- 9. Installations sanitaires
- 10. Réseaux d'énergie (courant fort)
- 11. Réseaux de communication (courant faible)
- 12. Appareils élévateurs et autres équipements de transport intérieur
- 13. Equipements de production locale d'énergie
- 14. Equipements spécifiques au secteur hospitalier : fluides médicaux, transport pneumatique...

Tableau 1: Découpages en lots du contributeur produits et équipements

Le lot 14 ci-dessus a été ajouté dans le cadre de l'étude HQE Performance Santé puisqu'il ne représente que des produits et équipements spécifiques au secteur hospitalier.

2.2.1.2 Renseignement des quantitatifs du projet

Pour la description détaillée des produits de construction et des équipements du bâtiment, le modélisateur devait renseigner les quantités associées à tous les éléments constitutifs du bâtiment, de sa parcelle et de ses activités. Ces quantités devaient être documentées. Les éléments non pris en compte devaient également être identifiés et consignés dans la documentation du projet.

2.2.1.3 Calcul des impacts environnementaux

Le calcul des impacts environnementaux liés aux produits, matériaux de construction et équipements a été obtenu en multipliant chaque quantité mise en œuvre dans le bâtiment par un profil environnemental (Déclaration Environnementale de produit de construction ou d'équipement).

Les profils environnementaux associés pouvaient être :

- Des données environnementales spécifiques :
 - Des FDES au sens de la NF EN 15804/A1 et son complément national XP P01-64/CN
 - Des FDES au sens de la NF P01-010 (valables jusqu'à leur fin de validité (au plus tard au 1^{er} juillet 2019)
 - Des PEP (Profil Environnemental Produit) issus du Programme PEP ecopassport
- Des données environnementales génériques, représentatives d'un produit type

2.2.2 CALCUL DU CONTRIBUTEUR ENERGIE - CONSOMMATIONS D'ENERGIE IMMOBILIERES

2.2.2.1 Frontières d'évaluation :

Les postes de consommation considérés pour ce contributeur étaient les suivants :

- Postes de consommation d'énergie des usages immobiliers partiellement couverts par la réglementation thermique
 - o le chauffage
 - o la production d'eau chaude sanitaire
 - les auxiliaires (de ventilation et de distribution)

- o le refroidissement
- l'éclairage
- Postes de consommation d'énergie des usages immobiliers (ou liés au bâtiment) non couverts par la réglementation thermique, par exemple :
 - o la production de fluides médicaux, le transport pneumatique
 - o les ascenseurs et monte-charges, les escaliers mécaniques, les monte-malades
 - o les occultations mécaniques (volets roulants motorisés, portes de garage, portiers, protections solaires)
 - les systèmes de contrôle d'accès et de sécurité
 - l'éclairage hors RT : parking, extérieur, de façade, enseignes, systèmes d'éclairage de sécurité, etc.
 - o les systèmes communicants (réseau de communication, réseau informatique et de gestion, centraux téléphoniques)
 - o autres : arrosage automatique, compteurs d'eau à impulsion

2.2.2.2 Renseignement des quantitatifs du projet

Les hypothèses suivantes ont été retenues pour la quantification des consommations :

- Les consommations d'énergie finale pour les postes réglementés sont calculées avec le code de calcul réglementaire applicable au projet.
- Les méthodes (scénarios, hypothèses...) utilisées pour les calculs des consommations relatives aux postes non réglementés doivent être documentées et justifiées.

Différents éléments étaient en possession du modélisateur au cours de l'étude :

- · Les résultats du calcul réglementaire
- Les résultats de Simulation Thermique Dynamique (STD)
- Le relevé des consommations réelles pour les projets construits

2.2.2.3 Calcul des impacts environnementaux

Le calcul des impacts environnementaux liés à ces consommations d'énergie a été obtenu en multipliant ces quantités d'énergie finale par les profils environnementaux de la mise à disposition des énergies finales (incluant les émissions issues de la combustion pour les équipements thermiques tels que chaudières, poêles à bois...).

2.2.3 CALCUL DU CONTRIBUTEUR ENERGIE - CONSOMMATIONS D'ENERGIE MOBILIERES

2.2.3.1 Frontières d'évaluation

Ce contributeur s'intéresse aux consommations relatives à l'exercice d'une activité dans un bâtiment donné. Il s'agit d'inclure les éléments non directement liés au bâti lui-même mais représentatifs de l'activité. Les postes considérés pour ce contributeur pouvaient être les suivants:

- o Blanchisserie
- o Service de restauration
- o Equipements techniques médicaux (scanner, IRM, etc.)
- o Equipements informatiques et audiovisuels

2.2.3.2 Renseignement des quantitatifs du projet

Les méthodes (scénarios, hypothèses...) utilisées pour les calculs des consommations relatives aux postes de consommations d'énergie mobilières devaient être documentées et justifiées. Dans le cadre du projet les modélisateurs avaient en leur possession certains relevés de consommations réelles.

2.2.3.3 Calcul des impacts environnementaux

Le calcul des impacts environnementaux liés à ces consommations d'énergie a été obtenu en multipliant ces quantités d'énergie finale par les profils environnementaux de la mise à disposition des énergies finales.

2.2.4 CALCUL DU CONTRIBUTEUR- CONSOMMATIONS ET REJETS D'EAU

2.2.4.1 Frontières d'évaluation

Les consommations d'eau devaient prendre en compte :

- Entretien des locaux (lorsqu'il n'est pas déjà inclus dans les données environnementales des produits de construction et équipements) ;
- Arrosage des végétaux associés au bâtiment (façades et toitures végétalisées, patios, etc.);
- Equipements de chauffage, de ventilation de conditionnement d'air (brumisation de patios, double flux adiabatique,...).
- Arrosage des espaces verts ;
- Sanitaires et lavabos ;
- Eviers, douches, baignoires;
- Et en fonction du type d'usage :
 - o Appareils électroménagers (lave-linge, lave-vaisselle, ...);
 - o Equipements de cuisine collective
 - o Equipements techniques spécifiques au secteur hospitalier (postes de dialyse ...)

Pour chacun de ces postes, devaient être distinguées les consommations d'eau du réseau d'eau potable et celles d'eau pluviale.

Les rejets liquides à considérer étaient :

- Les rejets d'eaux vannes et d'eaux grises ;
- Les rejets d'eaux pluviales.

Les rejets pris en compte devaient au moins couvrir les rejets des équipements pris en compte dans le calcul des consommations d'eau.

Par convention, les volumes de rejets étaient estimés égaux aux consommations.

Les procédés d'épuration des rejets liquides, qu'ils soient sur la parcelle ou extérieurs à celle-ci, étaient inclus dans les frontières de l'évaluation.

2.2.4.2 Renseignement des quantitatifs du projet

Pour réaliser l'évaluation des impacts du contributeur Consommations et rejets d'eau, il était nécessaire de renseigner les quantités d'eau consommées et rejetées pendant l'exploitation du bâtiment. Selon l'état d'avancement du projet, le niveau d'information détenu, l'objectif de l'analyse, trois types d'études décrits ci-dessous, ayant chacun leur niveau d'exigence quant aux données relatives au projet, ont été menées.

ETUDE ESTIMATIVE:

L'étude estimative correspond à la consommation moyenne d'eau par typologie d'usage établie à partir de retours d'expérience et de statistiques par les ingénieurs d'AIA.

Le tableau est composé de la manière suivante :

Secteurs	Variable		Ratio litres / jour / lits		Consommat ion L/jour	conso annuel m3
Hospitalisation	259	Lits et places	120	120 Litres/Jour/lit	31 080	11344
Consultations Administration	96	Bureau, poste	15	15 Litres/jour /Poste	1 440	526
Services de Soins Médicaux	69	postes	80	Litres /jour/Poste	5 520	2015
Bloc opératoire	18	Salles	300	300 Litres/jour/SOP	5 400	1971
Laverie Cuisine	1000	repas/Jour	20	Litres/jour/repas	20 000	7300
Traitement d'eau Dialyse	1	postes	400	Litres/Jour/poste	400	146
Services généraux	19	Poste, vestiaires, locaux humide	60	60 Litres/Jour/lit	1 140	416
				TOTAL	64 980	23718

Tableau 2: Tableau de simplification du contributeur Eau, basé sur les retours d'expériences AIA

ETUDE SIMPLIFIEE:

L'étude simplifiée du contributeur Consommations et rejets d'eau est basée sur la récupération des données de la consommation réelle globale, sans répartition par poste de consommation.

ETUDE DETAILLEE

L'étude détaillée est basée sur la récupération des données de consommations réelles et réparties par postes d'usages. Dans le cas le plus défavorable, seule une distinction entre l'hébergement et le plateau médicotechnique sera réalisée.

2.2.4.3 Calcul des impacts environnementaux

• Impacts environnementaux des consommations :

L'impact environnemental lié à la mise à disposition de l'eau consommée a été obtenu en multipliant les volumes d'eau consommés (par « source ») par les profils environnementaux de la mise à disposition de l'eau pour chacune des « sources ».

• Impacts environnementaux des rejets :

Les établissements étudiés étant reliés à un système d'assainissement collectif (réseau unitaire ou séparatif), l'impact environnemental a été obtenu en multipliant les volumes d'eau rejetés audit réseau par le profil environnemental du réseau de traitement des eaux usées.

2.2.5 CALCUL DU CONTRIBUTEUR- CHANTIER

2.2.5.1 Frontières d'évaluation

Pour le chantier de construction, des éléments sur la mise en œuvre des produits et équipements et sur la gestion des déchets de chantier étaient déjà inclus dans les déclarations environnementales des composants, associées dans le contributeur Composants.

Il s'agissait donc ici de chiffrer les éléments de chantier non pris en compte dans les déclarations environnementales des composants, à savoir :

- Volumes de terres mis en jeu lors des travaux de terrassement
- Consommations et rejets d'eau
- Amortissement matériel des équipements lourds
- Consommations d'énergie des cantonnements

- Consommations d'énergie des équipements lourds et des engins de chantier pour le terrassement, le forage de puits, le transport des équipements et des terres,
- Traitement des déchets issus du chantier, hors chutes de produits de construction ou d'équipements.

Le déplacement du personnel sur chantier était hors du périmètre de l'évaluation.

Le chantier de déconstruction/démolition du bâtiment contribue également au cycle de vie du bâtiment évalué. Par souci de simplification, le chantier de déconstruction en fin de vie du bâtiment n'a été comptabilisé qu'au travers des fins de vie des produits, comptabilisés dans les déclarations environnementales des composants.

2.2.5.2 Renseignement des quantitatifs du projet

Les informations de suivi de chantier étaient très variables d'un projet à l'autre. A minima, ont été renseignés les volumes de terrassement estimés, en précisant l'origine de cette estimation.

Pour les chantiers ayant bénéficié d'un suivi, ont été renseignés, dans la mesure du possible, les volumes réels de terrassement et les consommations d'eau et d'électricité. Si des informations relatives aux déchets de chantier étaient disponibles, n'ont été exploitées que celles qui concernent les travaux de terrassement, car les autres déchets étaient pris en compte dans les déclarations environnementales des composants.

2.2.5.3 Calcul des impacts environnementaux

Le calcul des impacts environnementaux de chacun des postes du contributeur chantier a été obtenu en multipliant ces quantités de déchets, de terrassement, de consommations par les profils environnementaux de la mise à disposition ou du traitement de ces éléments.

2.3 BASE DE DONNÉES

Pour les produits de construction et les équipements, les calculs peuvent utiliser les FDES et les PEP disponibles dans la base INIES (www.inies.fr) ou les données environnementales de la base du logiciel ELODIE.

2.4 ELODIE

Le logiciel retenu pour ces modélisations est ELODIE, l'outil d'analyse de cycle de vie des bâtiments développé par le CSTB depuis 2008. C'est un outil support au développement des certifications environnementales de bâtiment. Il peut être utilisé également comme outil d'aide à la conception (comparaison de variantes par exemple). Il présente les résultats des indicateurs environnementaux proposés par les normes NF EN 15804 et NF EN15978 d'une part, et NF P01-010 et XP P01-020-3 d'autre part. ELODIE est un outil à interface web (www.elodie-cstb.fr).

3. PROCEDURE DE REVUE CRITIQUE ACV

Ce chapitre présente le processus suivi pour la modélisation et la revue critique des projets ACV.

3.1 LES ACTEURS

3.1.1 MODELISATEURS

Les modélisations ont été réalisées par les partenaires du projet au sein d'AIA Studio Environnement :

- LE CADRE Sophie;
- MARHIC Louis ;
- HAVARD Maxime.

3.1.2 **VERIFICATEURS**

La revue critique des projets a été réalisée par les ingénieurs de la Division Environnement et Ingénierie du Cycle de Vie du CSTB :

- GRANNEC Francis;
- VESSON Marine.

3.2 LA PROCEDURE

La procédure de revue critique mise en place se déroule en plusieurs temps :

- 1. Création d'une plateforme de partage des différents documents de l'étude.
- 2. Le modélisateur **AIA Studio Environnement** fait parvenir au CSTB le projet modélisé ELODIE au format xml et le rapport Excel associé au projet en question.
- 3. Le vérificateur procède à la revue critique de l'ACV et renseigne ses commentaires, ses observations d'erreurs et ses demandes de modifications ou d'informations complémentaires dans un document de suivi de la revue critique. Ce document est ensuite renvoyé au modélisateur.
 - Le vérificateur n'a à sa disposition que le projet modélisé sous ELODIE. Il peut vérifier la plausibilité des quantitatifs, mais pas leur exactitude par rapport aux documents sources (DPGF, DQE...) non communiqués. Le vérificateur contrôle également la bonne adéquation entre la description des produits et la donnée environnementale associée. La complétude du périmètre de l'ACV est vérifiée (dans la limite des données accessibles au modélisateur). La cohérence des valeurs de consommations d'énergie, d'eau et de chantier saisies, ainsi que les données environnementales associées, sont également vérifiées.
- 4. Le modélisateur répond aux commentaires du vérificateur et corrige l'ACV en conséquence. Il retourne la nouvelle version du projet ELODIE et le document de suivi complété. Les étapes 2 et 3 peuvent être réitérées autant de fois que nécessaire.
- 5. Si ses demandes ont été satisfaites, le vérificateur notifie la fin de la revue critique au modélisateur.
- 6. Pour toutes les demandes inhérentes à l'ensemble des projets ou portant sur des données partagées un document d'échange spécifique a été mis en place entre **AIA Studio Environnement** et le CSTB afin de répondre et d'estimer au mieux les données nécessaires.

Le projet portant sur une typologie de bâtiment spécifique, il s'est avéré important de mettre en place des méthodologies de modélisation supplémentaires. Ces méthodologies ont été rédigées et testées par **AIA Studio Environnement** et ont été révisées et validées par le CSTB. C'est le cas notamment de la prise en compte des consommations mobilières, particulièrement importantes dans un bâtiment de santé.

Le document de suivi de revue critique se présente sous la forme d'un tableau d'échange, comportant une ligne par observation du vérificateur, comme ci-dessous.

					Remarques CSTB	Réponses AIA Studio Environnement	Statut vérification
Date	Version	Contributeur	Zone/Usage	Composant			

Tableau 3 Trame du document de suivi de revue critique

Les documents de suivi des revues critiques des projets HQE Performance Santé sont présentés en annexe de ce rapport.

4. DESCRIPTION DE L'ECHANTILLON

A l'origine du projet, vingt projets ont été sélectionnés par **AIA Studio Environnement** pour être modélisés par le biais du logiciel ELODIE. Seules dix-neuf études ont pu être menées à terme, un projet en lien avec la maquette numérique ayant été abandonné faute de données disponibles. Les projets sont détaillés ci-après.

L'un des projets parmi les dix-neuf étudiés a été séparé en deux bâtiments distincts. Notre échantillon final contient donc vingt bâtiments.

4.1 NATURE DES PROJETS

Le tableau ci-après présente sommairement les dix-neuf bâtiments modélisés.

N° bâtiment	Nom du projet (ville)	Surface SHON	Type d'opération	Typologie	Сер
					(kWhep/m².an)
1	Polyclinique du Parc Rambot – AIX EN PROVENCE	27 702 m²	Neuf	Bâtiment à vocation sanitaire et sociale	164,8
2	Clinique Belharra - BAYONNE	27 759 m²	Neuf	Bâtiment à vocation sanitaire et sociale	106,82
3	Polyclinique Bordeaux Nord Aquitaine - BORDEAUX	11 319 m²	Neuf	Bâtiment à vocation sanitaire et sociale	229
4	Maternité Saint Joseph - PARIS	12 733 m²	Neuf	Bâtiment à vocation sanitaire et sociale	171,5
5	Oréliance - ORLEANS	36 169 m²	Neuf	Bâtiment à vocation sanitaire et sociale	207,47
6	PFME - METZ THIONVILLE	20 765 m²	Neuf	Bâtiment à vocation sanitaire et sociale	227,6
7	Polyclinique du Parc - TOULOUSE	26 065 m²	Neuf	Bâtiment à vocation sanitaire et sociale	225
8	Hôpital Privé de Savoie - ANNEMASSE	23 866 m²	Neuf	Bâtiment à vocation sanitaire et sociale	221,2
9	Clinique ARAGO - PARIS	6 374 m²	Neuf	Bâtiment à vocation sanitaire et sociale	91

10	CH Antoine Gayraud - CARCASSONNE	56 300 m²	Neuf	Bâtiment à vocation sanitaire et sociale	252,7
11	Hôpital Privé de Bourgogne - DIJON	21 367 m²	Neuf	Bâtiment à vocation sanitaire et sociale	257,3
12	PFPE - CHOLET	9 600 m²	Neuf	Bâtiment à vocation sanitaire et sociale	139
13	Pôle Sanitaire de l'Ouest - SAINT PAUL	24 416 m²	Neuf	Bâtiment à vocation sanitaire et sociale	-
	La Réunion				
14	CH Marc Jacquet - MELUN	40 455 m²	Neuf	Bâtiment à vocation sanitaire et sociale	280,8
15	Hôpital Robert Schuman Hébergement - METZ	12 006 m²	Neuf	Bâtiment à vocation sanitaire et sociale	162
16	Hôpital Robert	26 602 m²	Neuf	Bâtiment à vocation	162
	Schuman Bâtiment médicotechnique - METZ			sanitaire et sociale	
17	Hôpital Mutualiste des Côtes d'Armor -	23 400 m²	Neuf	Bâtiment à vocation sanitaire et sociale	127
	SAINT BRIEUC				
18	Clinique Saint Côme - COMPIEGNE	19 520 m²	Neuf	Bâtiment à vocation sanitaire et sociale	241
19	CHU Plateau Technique - NANTES	26 024	Neuf	Bâtiment à vocation sanitaire et sociale	147
	Oliviana District	20.407	Nove	Dêtina a d. N. a a d'	000
20	Clinique Rhéna - STRASBOURG	32 167	Neuf	Bâtiment à vocation sanitaire et sociale	238

Tableau 4 : Description des 20 bâtiments des 19 projets modélisés

5. ANALYSE STATISTIQUE

Les « valeurs médianes HQE performance » sont parfois mentionnées ci-après à titre de rappel des ordres de grandeurs obtenues lors de ces expérimentations. Cependant, la typologie d'ouvrage n'étant pas la même, ces ordres de grandeurs ne peuvent être comparés directement.

L'adoption d'une représentation statistique de type « boîte à moustache » peut être faite en fonction des besoins ainsi qu'une représentation par médianes empilées.

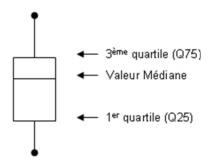


Figure 3: Principe d'affichage en boîte à moustache

La Figure 3 illustre l'affichage d'un échantillon statistique selon le principe de la boîte à moustache. Les bornes supérieure et inférieure (points noirs sur la Figure 3) peuvent représenter plusieurs estimateurs tels que les valeurs maximale et minimale (100 % des valeurs sont entre les bornes) ou les 9^{ème} et 1^{er} déciles (80 % des valeurs sont entre les bornes). Le 1^{er} quartile représente la limite séparant les 25 premiers pourcents de l'échantillon des 75 autres tandis que le 3^{ème} quartile sépare les 75 premiers pourcents des 25 autres. 50 % de l'échantillon est donc compris entre les 1^{er} et 3^{ème} quartiles. La valeur médiane délimite l'échantillon en deux parts égales.

5.1 TOUS CONTRIBUTEURS CONFONDUS

5.1.1 **MEDIANES EMPILEES**

Remarques

 Attention: Le module « Contributeur Energie: Postes réglementaires » présenté dans les graphiques médianes empilées ne correspond pas seulement aux valeurs issues du calcul réglementaire. En effet, au-delà des valeurs issues du calcul réglementaire, ce contributeur prend aussi en compte les consommations de chauffage, ECS, éclairage, etc, des zones de process propres aux bâtiments de santé.

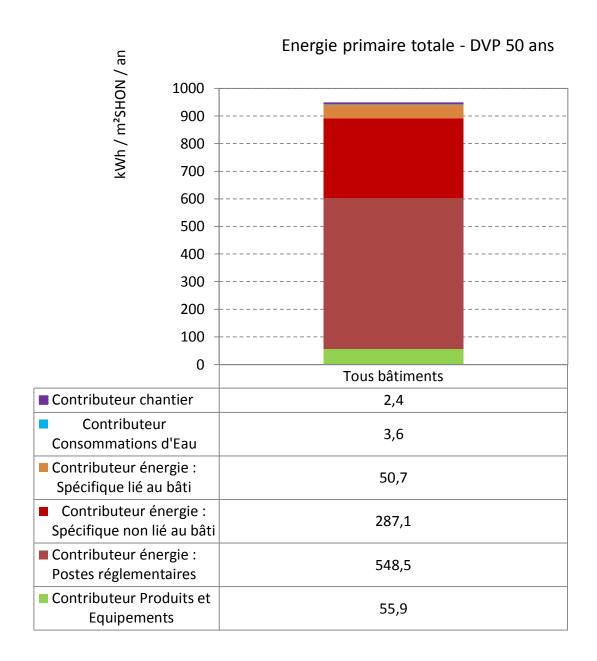


Figure 4 Représentation des médianes exprimées pour les 4 contributeurs pour l'indicateur énergie primaire totale pour l'ensemble des bâtiments pour une DVP de 50 ans.

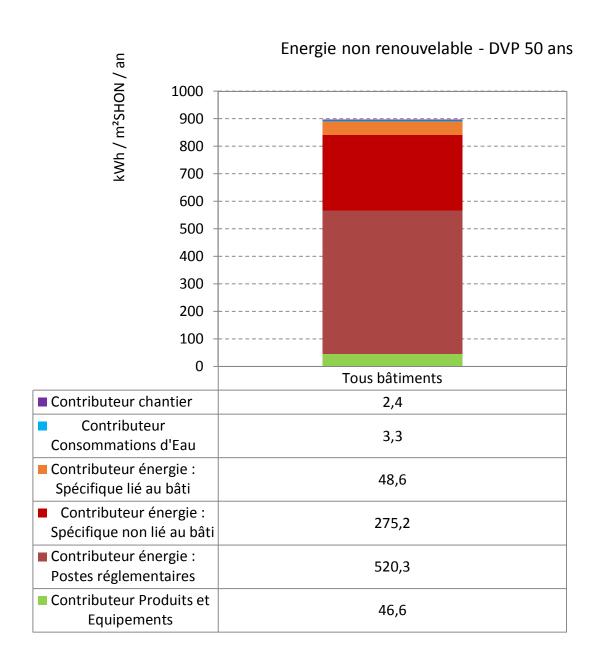


Figure 5 Représentation des médianes exprimées pour les 4 contributeurs pour l'indicateur énergie non renouvelable pour l'ensemble des bâtiments pour une DVP de 50 ans.

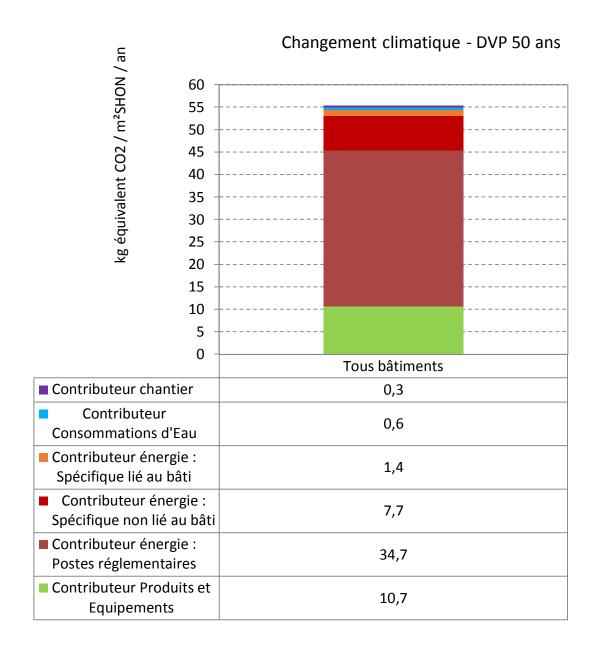


Figure 6 Représentation des médianes exprimées pour les 4 contributeurs pour l'indicateur changement climatique pour l'ensemble des bâtiments pour une DVP de 50 ans.

Consommation d'eau totale - DVP 50 ans

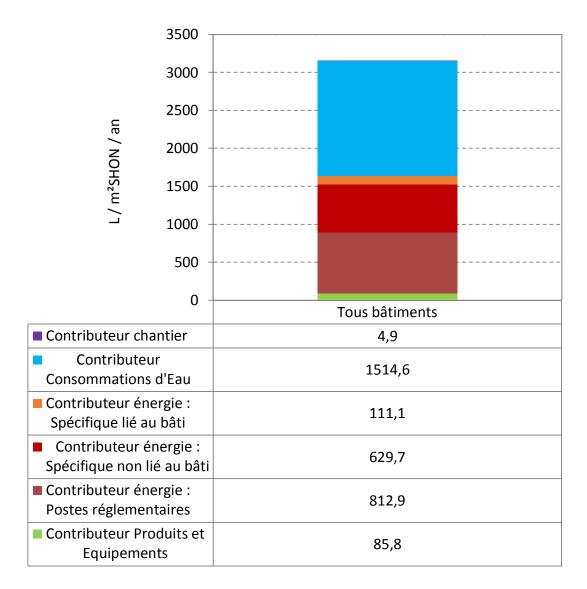


Figure 7 Représentation des médianes exprimées pour les 4 contributeurs pour l'indicateur consommation d'eau pour l'ensemble des bâtiments pour une DVP de 50 ans.

Déchets non dangereux - DVP 50 ans

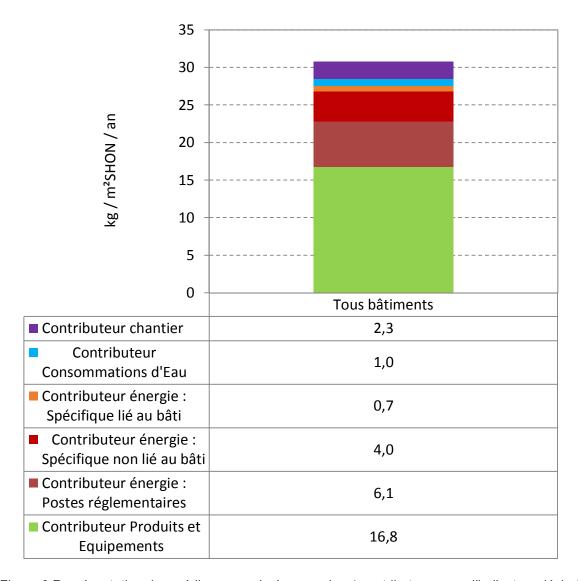


Figure 8 Représentation des médianes exprimées pour les 4 contributeurs pour l'indicateur déchets non dangereux pour l'ensemble des bâtiments pour une DVP de 50 ans.

Déchets dangereux - DVP 50 ans

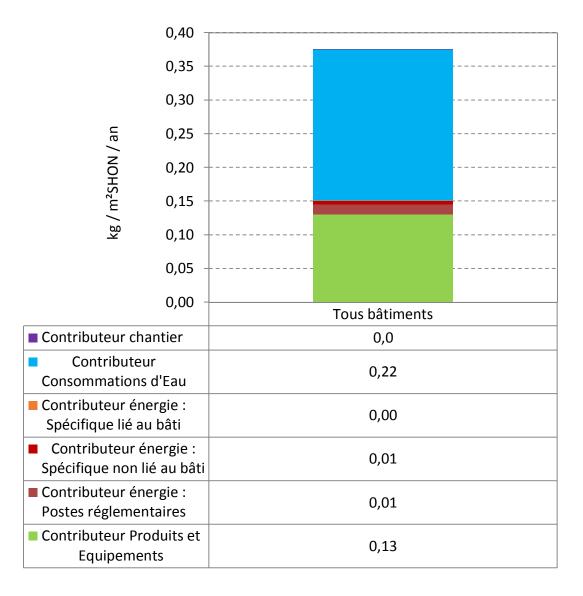


Figure 9 Représentation des médianes exprimées pour les 4 contributeurs pour l'indicateur déchets dangereux pour l'ensemble des bâtiments pour une DVP de 50 ans.

- ➤ Pour une période d'étude de 50 ans, les valeurs médianes des impacts environnementaux des bâtiments étudiés, pour les contributeurs Produits et équipements, Consommations d'énergie des postes règlementaires et spécifiques, Consommations et rejets d'eau et Chantier pour chaque indicateur, sont de l'ordre de :
- Energie primaire totale : 923 kWh/m²sном/an
- Energie primaire non renouvelable : 871 kWh/m²sном/an
- Changement climatique : 56 kg eq-CO₂/m²sном/an
- Consommation d'eau : 3121 L/m²sном/an
- Déchets non dangereux : 31 kg/m²sном/ап
- Déchets dangereux : 0,38 kg/m²sном/ап

5.1.2 BOXPLOTS PAR CONTRIBUTEUR

La contribution aux impacts de chacun des quatre contributeurs est présentée ci-après. Les valeurs sont détaillées dans les paragraphes suivants.

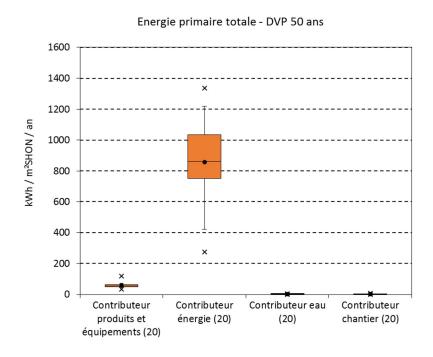


Figure 10 Boxplots par contributeur pour l'indicateur énergie primaire totale pour l'ensemble des bâtiments pour une DVP de 50 ans

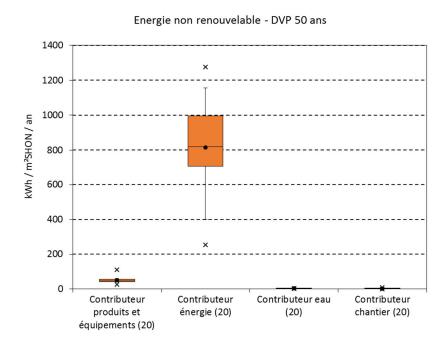


Figure 11 Boxplots par contributeur pour l'indicateur énergie non renouvelable pour l'ensemble des bâtiments pour une DVP de 50 ans

Changement climatique - DVP 50 ans

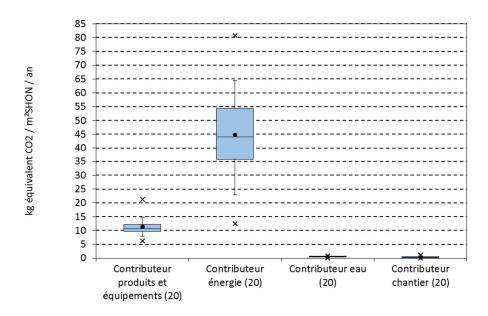


Figure 12 Boxplots par contributeur pour l'indicateur changement climatique pour l'ensemble des bâtiments pour une DVP de 50 ans

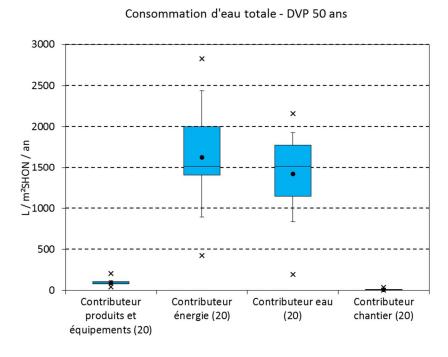


Figure 13 Boxplots par contributeur pour l'indicateur consommation d'eau pour l'ensemble des bâtiments pour une DVP de 50 ans

Déchets non dangereux - DVP 50 ans

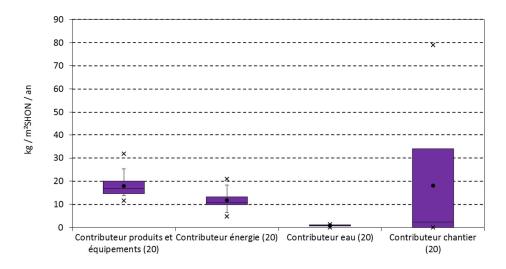


Figure 14 Boxplots par contributeur pour l'indicateur déchets non dangereux pour l'ensemble des bâtiments pour une DVP de 50 ans

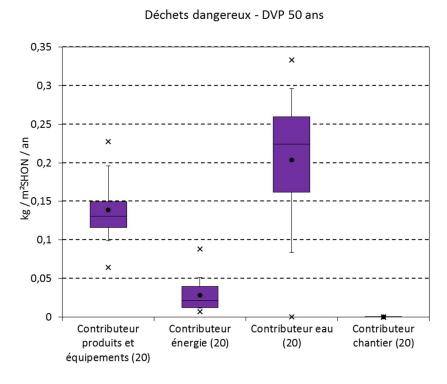


Figure 15 Boxplots par contributeur pour l'indicateur déchets dangereux pour l'ensemble des bâtiments pour une DVP de 50 ans

Il apparait distinctement sur ces divers graphiques de résultats représentant tous les contributeurs, que le contributeur Energie totale est prépondérant sur les indicateurs énergétiques (Energie Primaire Totale et Energie non renouvelable), le Changement climatique et la Consommation d'eau.

Le contributeur Eau est prépondérant sur l'indicateur Consommation d'eau ainsi que sur l'indicateur Production de déchets dangereux. Cette tendance se retrouve dans les résultats des expérimentations HQE Performance puisque la donnée associée aux valeurs de consommation d'eau dans le logiciel ELODIE intègre un fort taux de traitement des boues en station d'épuration, ce qui entraine la production de déchets dangereux.

Sur l'indicateur Déchets non dangereux, c'est le contributeur chantier qui apparait comme le plus impactant puisque les volumes de terres excavées nécessaires au terrassement lors des chantiers de construction sont considérés comme des déchets non dangereux.

Les graphiques et tableaux suivant permettront d'entrer davantage dans le détail de ces phénomènes.

5.2 CONTRIBUTEUR CONSOMMATIONS D'ENERGIE

- Pour une période d'étude de 50 ans, les valeurs médianes des impacts environnementaux des bâtiments étudiés pour le contributeur Consommations d'énergie des postes règlementaires et spécifiques, sont de l'ordre de :
- Energie primaire totale : **861 kWh/m²**sном/**an** [276 1337]
- Energie primaire non renouvelable : **818 kWh/m²**sном/an [253 1276]
- Changement climatique : 44 kg eq-CO₂/m²sном/an [12 − 81]
- Consommation d'eau : 1515 L/m²sном/ап [425 2824]
- Déchets non dangereux : 10,7 kg/m²sном/ап [4,9 21]
- Déchets dangereux : **0,022 kg/m²shon/an** [0,007 0,088]
- Pour rappel, les valeurs médianes des impacts environnementaux de la totalité des bâtiments étudiés dans HQE Performance, pour une durée d'étude de 50 ans, pour le contributeur Consommations d'énergie, sont de l'ordre de :
- Energie primaire totale : 180,1 kWh/m²SHON/an
- Energie primaire non renouvelable : 180 kWh/m²SHON/an
- Changement climatique: 7.3 kg eg-CO2/m²SHON/an
- Consommation d'eau : 281,8 L/m²SHON/an
- Déchets non dangereux : 1,9 kg/m²SHON/an
- Déchets dangereux : 0,002 kg/m²SHON/an

		Usages Réglementaires	Usages spécifiques liés au bâtiment	Usages spécifiques non liés au bâtiment
Energie primaire	(kWh / m²	548.5	50.7	287.1
totale	SHON/an)			
Energie non	(kWh / m²	520.3	48.6	275.2
renouvelable	SHON/an)			
Changement	(kg équivalent	34.7	1.4	7.7
climatique	CO2 / m ²			
	SHON/an)			
Consommation d'eau	(L / m² SHON/an)	812.9	111.1	629.7
Déchets non	(kg / m² SHON/an)	6.1	0.7	4.0
dangereux	,			
Déchets dangereux	(kg / m² SHON/an)	0.015	0.0009	0.005

Tableau 5 : Tableau récapitulatif des valeurs médianes du Contributeur Energie par usage

Les principaux écarts observés entre la présente étude et l'expérimentation HQE Performance réside dans les valeurs de ce contributeur Energie.

En effet, ce contributeur apparait comme étant le plus impactant sur la quasi-totalité des indicateurs.

La première explication se trouve dans la complétude des projets modélisés par **AIA Studio Environnement**. En effet, le niveau de détail et la qualité des projets analysés au cours de cette étude, notamment vis-à-vis des usages spécifiques, entrainent une meilleure prise en compte du contributeur et donc une augmentation des valeurs.

Un deuxième pan de l'explication tient dans la nature même des projets modélisés. Ceux-ci sont des bâtiments de santé. Au sein de ces bâtiments de nombreuses zones de process très consommatrices en énergie sont à prévoir, sans parler de la demande en chauffage ou en eau chaude sanitaire associée à ces process particuliers. C'est pourquoi la part des usages réglementaires apparait également comme très élevée.

5.3 CONTRIBUTEUR PRODUITS ET ÉQUIPEMENTS

- Pour une période d'étude de 50 ans, les valeurs médianes des impacts environnementaux des bâtiments étudiés pour le contributeur Produits et équipements, sont de l'ordre de :
- Energie primaire totale : 56 kWh/m²sном/ап [33 120]
- Energie primaire non renouvelable : 46,6 kWh/m²sном/an [26 109]
- Changement climatique : 10,7 kg eq-CO₂/m²sном/an [6 21]
- Consommation d'eau : **86 L/m²**sно**n/an** [43 200]
- Déchets non dangereux : **16,8 kg/m²**sном/**an** [12 32]
- Déchets dangereux : **0,13 kg/m²**sно**n/an** [0,06 0,23]
- Pour rappel, les valeurs médianes des impacts environnementaux de l'ensemble des bâtiments étudiés dans HQE Performance, pour une durée d'étude de 50 ans, pour le contributeur Produits et équipements, sont de l'ordre de :
- Energie primaire totale : 52,5 kWh/m²SHON/an
- Energie primaire non renouvelable : 45,5 kWh/m²SHON/an
- Changement climatique : 10,5 kg eq-CO2/m²SHON/an
- Consommation d'eau : 130 L/m²SHON/an
- Déchets non dangereux : 32,1 kg/m²SHON/an
- Déchets dangereux : 0,16 kg/m²SHON/an

Remarques

- Attention: Les valeurs de l'indicateur changement climatique peuvent être biaisées par l'utilisation de FDES présentant des valeurs négatives pour les produits bois (ou biosourcés plus généralement). Ces données sont en cours d'harmonisation au sein de la base de données INIES mais l'étude ayant été réalisée en amont de ce travail, l'utilisation de FDES présentant un chiffre négatif sur l'indicateur Changement climatique n'est pas impossible.
- S'agissant majoritairement de bâtiments publics recevant du public, les projets présentaient de grandes surfaces viabilisés (surfaces d'enrobé de voirie très importantes). Le lot VRD est donc souvent plus impactant que ce qui a pu être observé lors des expérimentations HQE Performance.
- Les lots techniques 10 à 14 concernant les équipements ont été assez peu modélisés (faute de quantitatifs ou de données environnementales).

Les graphiques ci-dessous présentent le poids relatif des produits et équipements regroupés en souscatégories de lots dans un premier temps (Gros œuvre, Second œuvre et équipements), puis par lots (comme présenté dans le Tableau 1).

5.3.1 RESULTATS DECOMPOSES PAR REGROUPEMENT DE LOTS TECHNIQUES

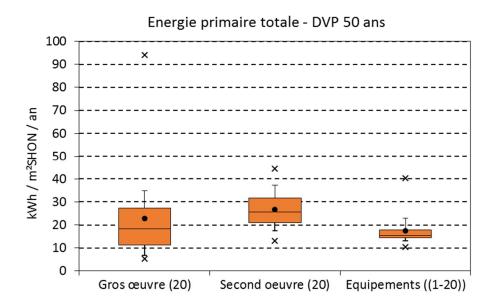


Figure 16 Boxplots par regroupement de lots techniques pour l'indicateur énergie primaire totale pour l'ensemble des bâtiments pour une DVP de 50 ans

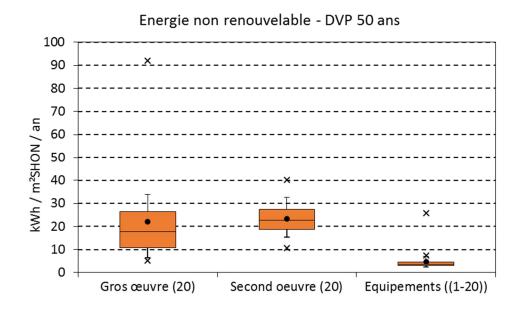


Figure 17 Boxplots par regroupement de lots techniques pour l'indicateur énergie non renouvelable pour l'ensemble des bâtiments pour une DVP de 50 ans

Figure 18 Boxplots par regroupement de lots techniques pour l'indicateur changement climatique pour l'ensemble des bâtiments pour une DVP de 50 ans

Gros œuvre (20)

Second oeuvre (20)

Equipements ((1-20))

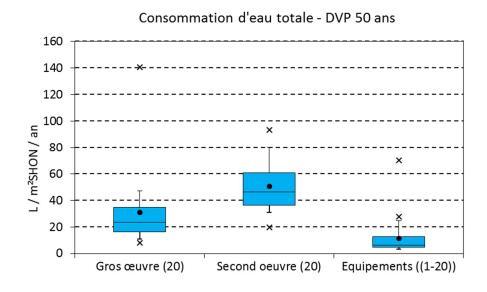


Figure 19 Boxplots par regroupement de lots techniques pour l'indicateur consommation d'eau pour l'ensemble des bâtiments pour une DVP de 50 ans

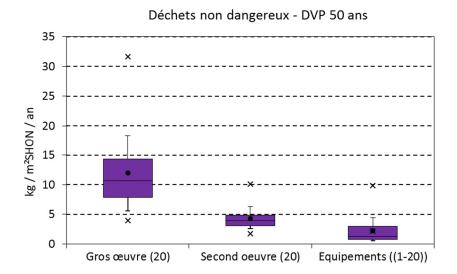


Figure 20 Boxplots par regroupement de lots techniques pour l'indicateur déchets non dangereux pour l'ensemble des bâtiments pour une DVP de 50 ans

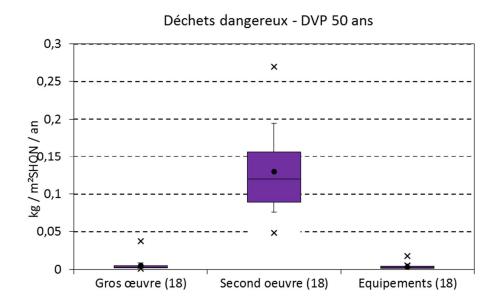


Figure 21 Boxplots par regroupement de lots techniques pour l'indicateur déchets dangereux pour l'ensemble des bâtiments pour une DVP de 50 ans

5.3.2 RESULTATS DECOMPOSES PAR LOTS TECHNIQUES

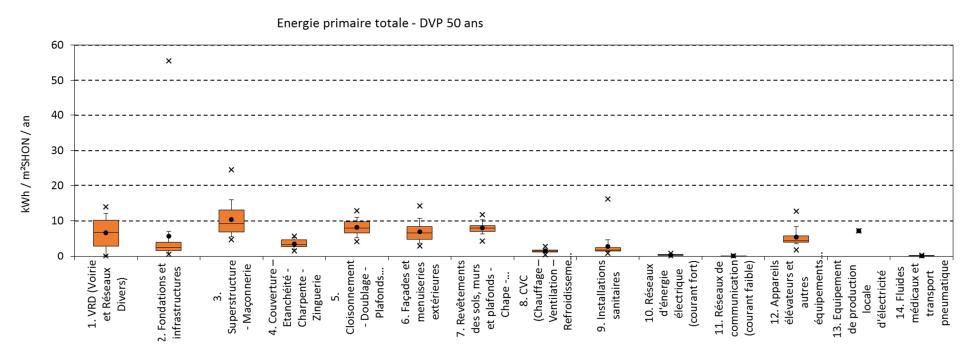
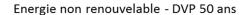



Figure 22 Boxplots par lots techniques pour l'indicateur énergie primaire totale pour l'ensemble des bâtiments pour une DVP de 50 ans

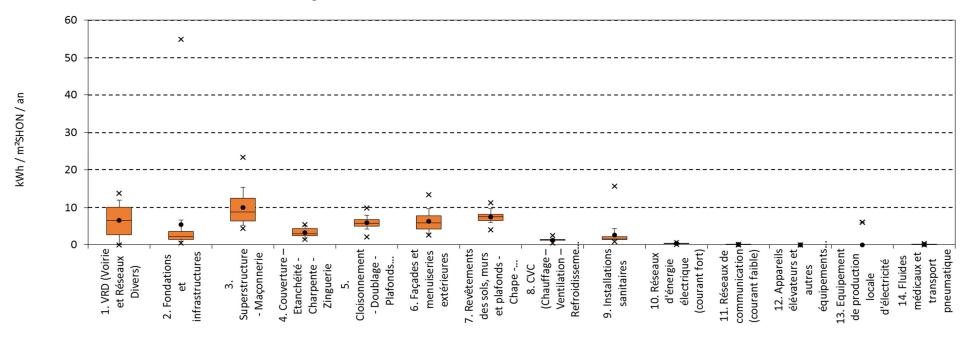


Figure 23 : Boxplots par lots techniques pour l'indicateur énergie non renouvelable pour l'ensemble des bâtiments pour une DVP de 50 ans

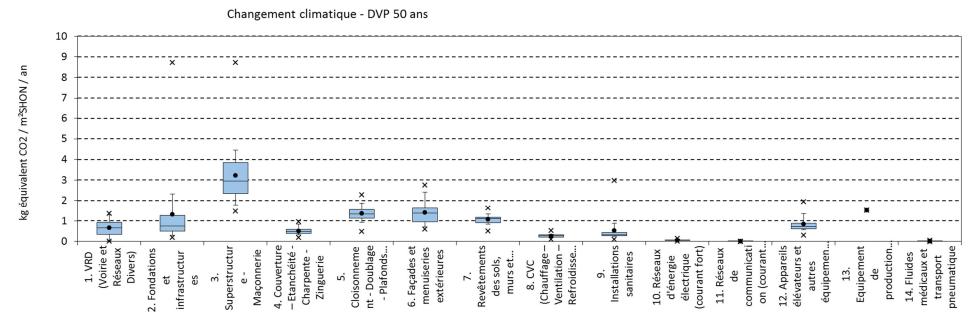


Figure 24 : Boxplots par lots techniques pour l'indicateur changement climatique pour l'ensemble des bâtiments pour une DVP de 50 ans

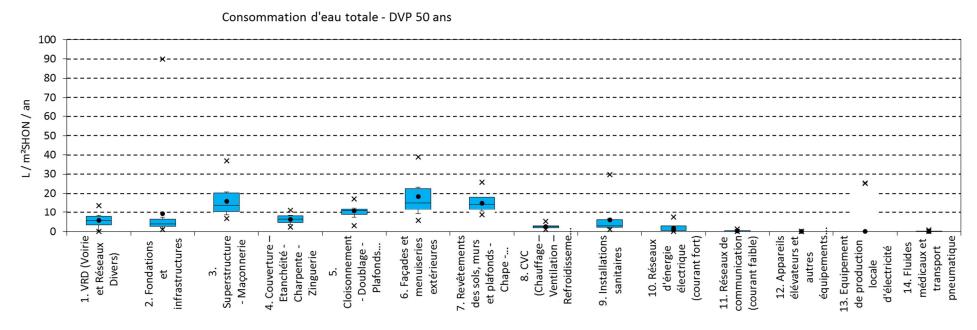


Figure 25 : Boxplots par lots techniques pour l'indicateur consommation d'eau pour l'ensemble des bâtiments pour une DVP de 50 ans

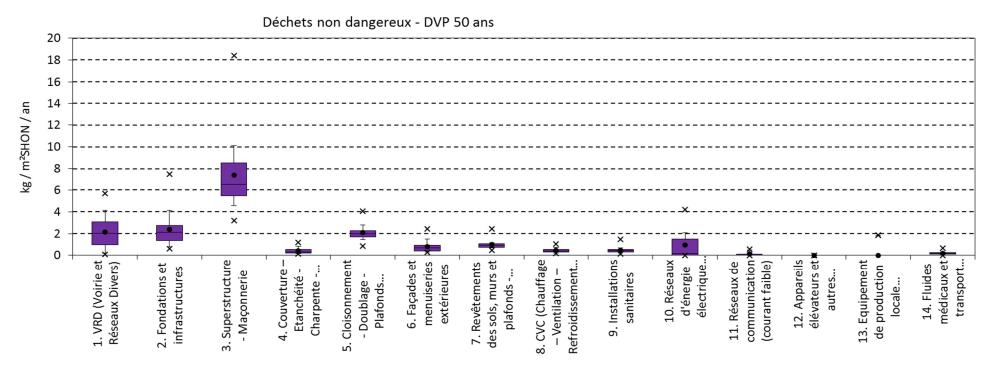


Figure 26 : Boxplots par lots techniques pour l'indicateur déchets non dangereux pour l'ensemble des bâtiments pour une DVP de 50 ans

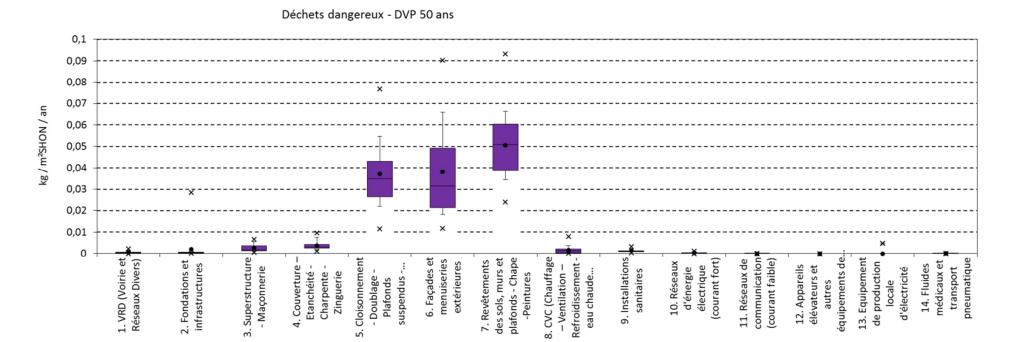


Figure 27 : Boxplots par lots techniques pour l'indicateur déchets dangereux pour l'ensemble des bâtiments pour une DVP de 50 ans

Les graphiques précédents mettent en exergue le manque de données concernant les lots techniques. En effet, les lots 8 à 14 sont très peu représentés sur les différents indicateurs alors que le poids des équipements hospitaliers ne devrait pas être négligeable.

Les valeurs observées dans l'étude HQE Performance Santé sont très proches des ordres de grandeurs esquissés par les expérimentations HQE Performance.

5.4 CONTRIBUTEUR EAU

- Pour une durée d'étude de 50 ans, les valeurs des impacts environnementaux des bâtiments étudiés pour le contributeur Eau, sont de l'ordre de :
- Energie primaire totale : **3,64 kWh/m**²sном/**an** [0,48 5,4]
- Energie primaire non renouvelable : 3,3 kWh/m²sном/an [0,43 4,9]
- Changement climatique : **0,59 kg eq-CO₂/m²**sном/an [0,08 0,87]
- Consommation d'eau : **1515 L/m²**sном/an [192 2159]
- Déchets non dangereux : 0,98 kg/m²sном/ап [0,036 1,45]
- Déchets dangereux : **0,22 kg/m²s**HoN/an [0,0005 0,33]

Le renseignement de ce contributeur a été basé sur des valeurs réelles et des ratios proposés par **AIA Studio Environnement** par le biais de nombreux retours d'expériences.

Les valeurs observées dans cette étude sont toutes plus élevées que celles issues des expérimentations HQE Performance. Cela s'explique par une consommation bien plus grande de l'eau au sein d'un établissement de santé en comparaison avec un bâtiment résidentiel. Comme présenté dans le Tableau 2, les postes de consommation d'eau au sein d'un bâtiment de santé cumulent les postes d'un bâtiment résidentiel (notamment par le biais des chambres mises à disposition des patients, des cuisines, etc...) et des postes spécifiques tels que la consommation d'eau en bloc opératoire ou le traitement d'eau de dialyse.

5.5 CONTRIBUTEUR CHANTIER

- Pour une durée d'étude de 50 ans, les valeurs des impacts environnementaux des bâtiments étudiés pour le contributeur Chantier, sont de l'ordre de :
- Energie primaire totale : **2,38 kWh/m**²sном/**an** [0,05 9,8]
- Energie primaire non renouvelable : **2,37 kWh/m²**sно**л/an** [0,05 9,5]
- Changement climatique : **0,32 kg eq-CO₂/m²**sном/an [0,012 1,11]
- Consommation d'eau : 4,9 L/m²sном/ап [0,01 33,5]
- Déchets non dangereux : **2,3 kg/m²**sном/**an** [0,00037 79]
- Déchets dangereux : **0,00005 kg/m²**sном/**an** [0,00000078 0,00018]

Le renseignement de ce contributeur a essentiellement consisté au renseignement du volume de terrassement lors des chantiers de construction. Il est en effet complexe d'obtenir des données réelles de consommation du chantier *a posteriori*.

Le contributeur chantier apparait significatif sur l'indicateur déchets non dangereux. Cela s'explique par les très grands volumes de terre excavées et acheminées en site de traitement de déchets non dangereux pendant la phase de construction de l'ouvrage.

6. DISCUSSION DES RESULTATS

6.1 EVALUATION DE L'ÉCHANTILLON D'ÉTUDE

Comme présenté précédemment, l'échantillon d'étude se compose de 19 projets comptabilisant un total de 20 bâtiments distincts.

Il est apparu dans de nombreux cas que les projets modélisés étaient composés de différents bâtiments ou différentes entités d'usages (une clinique et une maison médicale par exemple). Les modélisateurs ont, dans la mesure du possible, essayé d'appliquer des règles d'allocation pour affecter les produits et équipements aux bâtiments dont ils dépendent.

A la vue de l'échantillon final, seul un projet a pu être correctement découpé selon deux entités d'usages distinctes. Cela s'explique par le manque de détails disponibles dans les documents issus des chantiers de construction (DPGF ou CCTP).

Il est important de noter que l'un des 19 établissements hospitaliers modélisés est situé à La Réunion (Pôle Sanitaire de l'Ouest - SAINT PAUL La Réunion). En l'absence de données environnementales propres à l'île de la Réunion (données énergies, eau, produits et équipements), ce projet a été modélisé comme s'il avait été situé en métropole. Les spécificités du mix électrique local, ainsi que les distances de transport des produits et des équipements supplémentaires, ne sont donc pas considérées. Les résultats de l'ACV diffèrent donc probablement des impacts environnementaux réels du cycle de vie de ce projet.

L'échantillon regroupe des bâtiments de même typologie mais les types de structures, finitions et équipements sont propres à chacun des projets.

Cet échantillon peut donc permettre d'appréhender les premières valeurs issues de cette typologie de bâtiment. Les ordres de grandeur présentés reposent sur des modélisations de qualité, complétées dans la limite des données disponibles au moment de la réalisation de l'étude.

6.2 EVALUATION DE LA QUALITE DES MODELISATIONS

Les modélisations ont été réalisées par **AIA Studio Environnement** ayant des connaissances en ACV des bâtiments et ayant rapidement pris en main le logiciel ELODIE. La processus de revue critique des modélisations par le CSTB a permis d'identifier des erreurs ou points d'amélioration possibles et a permis d'obtenir des projets homogénéisés et de qualité.

6.2.1 LES DONNEES RELATIVES AUX PROJETS

En fonction des données quantitatives accessibles lors des modélisations, certaines hypothèses et approximations ont été mises en place par **AIA Studio Environnement** et le CSTB.

Contributeur produits de construction et équipements :

Concernant les produits de construction et équipements, si les lots de gros œuvre et second œuvre ont pu être correctement modélisés, les lots techniques quant à eux ne bénéficient pas d'autant de données environnementales.

En effet, de nombreux équipements techniques et produits de construction ne disposent pas encore à ce jour de déclarations environnementales, ni spécifique ni générique, permettant de les modéliser directement sous ELODIE. Plutôt que d'omettre ces composants dans l'ACV des bâtiments, et donc de négliger totalement les impacts qu'ils engendrent, les modélisateurs ont réalisé des hypothèses et approximations permettant d'appréhender au mieux ces impacts.

Dans un premier temps, le CSTB et l'Association HQE – France GBC ont réalisé un *Guide de l'Expérimentateur* (CSTB, février 2012) et un guide pratique *Réaliser une Analyse de Cycle de Vie d'un Bâtiment Neuf* (Association HQE, mars 2015), qui mettent à disposition des utilisateurs des éléments de calculs et de simplification pour un certain nombre de composants.

Pour les éléments n'étant pas couverts par ces guides, AIA Studio Environnement a entrepris :

- De proposer un ou plusieurs profils environnementaux de substitution, parmi les données disponibles sur INIES et ELODIE: ce choix se base principalement sur la nature des matériaux concernés
- D'estimer, pour ce(s) profil(s) de substitution, le(s) quantitatif(s) correspondant à une Unité Fonctionnelle (UF) du composant à modéliser.

Chacune de ces propositions a été revue et validée au cours de la revue critique réalisée par le CSTB.

L'ANNEXE 3 présente la liste des données environnementales manquantes ainsi que les propositions d'amélioration rédigées par **AIA Studio Environnement** et le CSTB.

Contributeur énergie :

Pour renseigner correctement les informations relatives au contributeur Energie, en fonction des documents et informations disponibles, les modélisateurs ont mis en place une méthodologie propre aux bâtiments de santé, ceux-ci possédants différentes zone de process spécifiques. Cette méthodologie, présentée en ANNEXE 2, a été rédigée en collaboration avec le CSTB.

Contributeur eau:

A la vue de la typologie spécifique des projets, les consommations et rejets d'eau ont été modélisées par le biais de retours d'expériences et statistiques des ingénieurs d'**AIA Studio Environnement**, les calculatrices de simplification disponibles dans le logiciel ELODIE étant basées sur des bâtiments d'habitation.

Contributeur chantier :

L'estimation de ce contributeur est basée sur les volumes de terrassement nécessaires à la construction des bâtiments. Il est apparu complexe d'obtenir plus de renseignements.

6.2.2 LES DONNEES ENVIRONNEMENTALES

Il est important de souligner que les projets ont été modélisés avec les données environnementales disponibles au moment de l'étude.

Ainsi, peu de données environnementales pour les équipements électriques, électroniques et de génie climatique étaient disponibles lors des modélisations, ce qui a conduit à une assez mauvaise modélisation de ces lots techniques, comme en témoignent les différents graphiques portant sur le contributeur produits et équipements.

Il parait important pour les prochaines études HQE performances de mettre l'accent sur ces lots techniques pour mieux les estimer et identifier les marges de progrès.

7. CONCLUSION

La présente étude a permis la réalisation de 19 analyses de cycle de vie de bâtiments de santé. Ces ACV ont fait l'objet d'une revue critique afin d'en assurer la bonne qualité. Ce projet avait, entre autres, pour finalité de renforcer les expérimentations HQE Performance en proposant une étude sectorielle et en diversifiant ainsi les typologies étudiées.

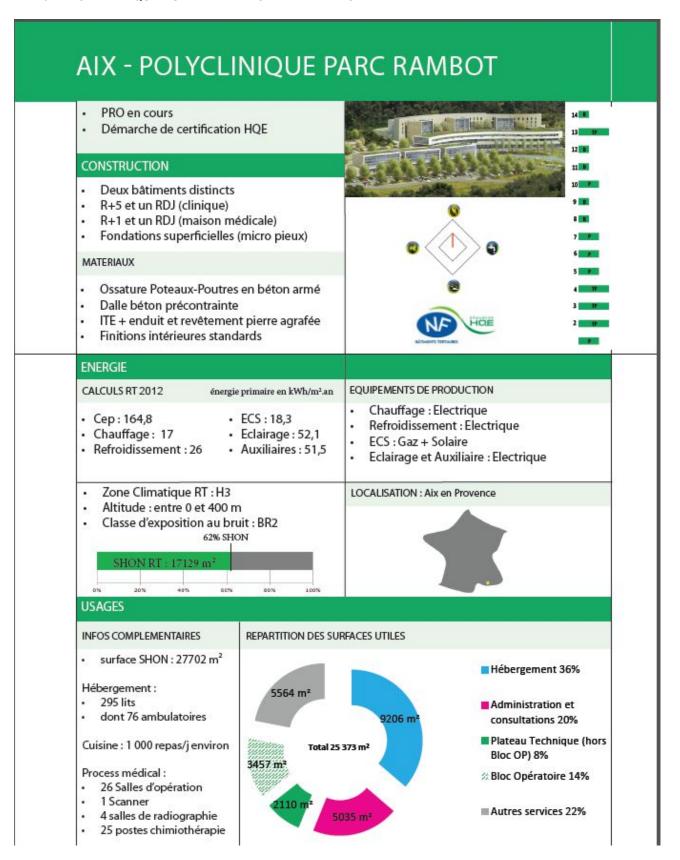
La complétude des projets et l'attention avec laquelle ces derniers ont été modélisés ont assuré l'homogénéité des résultats.

La typologie de bâtiments étudiés étant très spécifique, un travail a été mené entre AIA Studio Environnement et le CSTB pour proposer des méthodologies et des estimations propres aux bâtiments de santé. Ce travail a été particulièrement poussé sur les contributeurs Energie et Eau.

Le contributeur produits et équipements reste dans les mêmes ordres de grandeur que les précédentes expérimentations HQE Performance. Le niveau de détail des opérations étant un peu plus élevé, une légère augmentation des impacts est observable sur les indicateurs énergétiques et l'indicateur de changement climatique.

Les principales conclusions de ce rapport portent sur la contribution des postes de consommation d'énergie qui impactent très fortement la quasi-totalité des indicateurs présentés dans ce document. En effet, de par la spécificité des bâtiments étudiés et le fort besoin en énergie lié aux process hospitaliers, **le contributeur énergie** est très largement au-dessus des médianes observées dans HQE Performance.

Cette étude vient donc confirmer que la sobriété énergétique est, pour des bâtiments très consommateurs, la meilleure source de progrès environnemental. Le travail sur le contributeur produits et équipements reste important sur les sujets de ressources non énergétiques et de déchets.


La prise en compte des postes spécifiques de manière aussi complète et documentée est une véritable nouveauté dans les expérimentations HQE Performance car ces postes n'étaient que peu estimés lors des précédentes éditions.

Les contributeurs Eau et Chantier permettent de prendre en compte de manière globale le cycle de vie des bâtiments étudiés. De la même manière, les valeurs d'impacts sont plus importantes que les ordres de grandeurs précédemment observés dans les expérimentations HQE Performance aux vues des spécificités et des consommations particulières des bâtiments de santé.

Pour conclure, grâce à cette étude, le secteur hospitalier dispose aujourd'hui d'une méthodologie adaptée à ses spécificités, pour réaliser des ACV et poursuivre la capitalisation des résultats et la recherche des leviers d'écoconception.

8. ANNEXE 1: DESCRIPTIFS DES OPERATIONS MODELISEES

8.1 POLYCLINIQUE DU PARC RAMBOT - AIX EN PROVENCE

CLINIQUE BELHARRA

- · Livraison prévue : août 2015
- · Démarche de certification HQE

CONSTRUCTION

- 1 bâtiment
- fondations superficielles: semelles filantes
- R+6 sans sous-sol

MATERIAUX

- Ossature poteaux-poutres en béton armé
- Toiture terrasse sur dalle pleine en béton
- Bardage zinc
- ITE Standard

1

ENERGIE

CALCULS RT 2005

énergie primaire en kWh/m².an

- Cep:107
 - Chauffage:9 Eclair
- Refroidissement: 7
- ECS : 22
 Eclairage : 25
- Auxiliaires: 44

EQUIPEMENTS DE PRODUCTION

- Chauffage : Gaz
- Refroidissement : Electrique
- ECS : Gaz + Solaire
- Eclairage et Auxiliaire : Electrique

- Zone Climatique RT
- Altitude
- Classe d'exposition au bruit

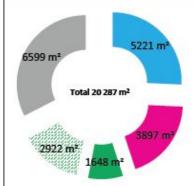
68% SHON

LOCALISATION : Bayonne

USAGES

DONNEES COMPLEMENTAIRES

surface SDO: 30 136 m²


Hébergement:

- 223 lits
- 6% d'ambulatoire (14 lits)

Cuisine: 780 repas/j environ

Process médical :

- 18 salles d'opérations
- 4 salles radiologie
- 1 salle scanner
- 1 salle IRM

- Hébergement 26%
- Administration et consultations 19%
- Plateau Technique (hors Bloc OP) 8%
- # Bloc Opératoire 14%
- Autres services 33%

BORDEAUX - POLYCLINIQUE NORD AQUITAINE

Livraison en 2016

CONSTRUCTION

- 5 niveaux supérieurs
- 1 sous-sol
- · Fondations profondes (129 pieux)

MATERIAUX

- Ossature Poteaux-Poutres en béton armé
- Dalles pleines et Dalles alvéolées
- Bardages fibre de verre + résine
- Bardage aluminium
- Finitions intérieures standards

ENERGIE

CALCULS RT 2012

énergie primaire en kWh/m².an

- Cep: 229
- Chauffage: 21,3
- · Refroidissement: 17
- ECS: 78,4Eclairage: 77,6
- Auxiliaires: 34,3

EQUIPEMENTS DE PRODUCTION

- Chauffage : Gaz
- Refroidissement : Electrique
- ECS : Gaz
- Eclairage et Auxiliaire : Electrique
- Zone Climatique RT : H2-c
- Altitude: 20 m
- Classe d'exposition au bruit : BR3

LOCALISATION : Bordeaux

USAGES

INFOS COMPLEMENTAIRES

- surface SHON: 11319 m²
- surface utile: 8480 m²

Hébergement :

173 lits

Cuisine : pas de cuisine

Process médical:

- 11 Salles d'opération
- · 1 poste de radiographie

1426 m² Total 6 066 m² 844 m³ 388 m² 961 m²

REPARTITION DES SURFACES UTILES

Hébergement 40%

- Administration et consultations 16%
- Plateau Technique (hors Bloc OP) 6%
- # Bloc Opératoire 14%
- Autres services 24%

MATERNITE SAINT JOSEPH

- Livré en 2011
- Construction neuve et restructuration exis-

CONSTRUCTION

- 1 bâtiment
- fondations superficielles
- R+6, 3 niveaux de sous-sol

MATERIAUX

- Ossature poteaux-poutres en béton armé
- Toiture terrasse en dalles béton
- Seconde peau panneaux aluminium mobiles
- Revêtement de sol tout grès cérame

ENERGIE

CALCULS RT 2005

énergie primaire en kWh/m².an

- Cep: 172
- Chauffage: 38
- Refroidissement


- ECS: 24 Eclairage: 46
- Auxiliaires: 50

EQUIPEMENTS DE PRODUCTION

- Chauffage : Réseau de chaleur
- Refroidissement : Electrique (PAC)
- ECS: solaire thermique, pompe à chaleur et réseau de chaleur
- Eclairage et Auxiliaire : Electrique

Zone Climatique RT: H1a

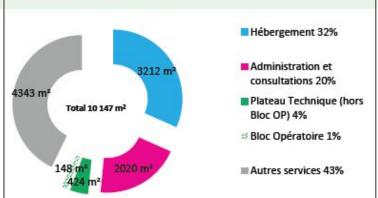
- Altitude: 100 m
- Classe d'exposition au bruit : BR2 93% SHON

LOCALISATION : Paris

USAGES

DONNEES COMPLEMENTAIRES

- surface SDO: 13 401 m²
- SHON: 12 733 m2


Hébergement:

72 lits

Cuisine: 300 repas/j environ

Process médical:

2 salles de césarienne

PÔLE SANTE ORELIANCE

- Livré en 2013
- Niveau THPE RT 2005

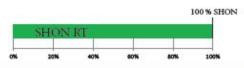
CONSTRUCTION

- · fondations superficielles
- R+6

MATERIAUX

- Ossature poteaux-poutres en béton armé
- Toiture terrasse dalle béton
- Bardage aluminium

ENERGIE


CALCULS RT 2005

énergie primaire en kWh/m².an

- Cep:207
- Chauffage: 74
- Refroidissement: 5
- ECS : 28
- Eclairage: 45
- Auxiliaires : 55

EQUIPEMENTS DE PRODUCTION

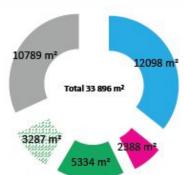
- Chauffage : gaz et électricité
- Refroidissement : Electrique
- ECS: gaz
- Eclairage et Auxiliaire : Electrique
- · Zone Climatique RT : H1b
- · Altitude: 110 m

LOCALISATION: Orléans

USAGES

DONNEES COMPLEMENTAIRES

SHON: 36 169 m²


Hébergement :

- 500 lits
- 13% d'ambulatoire

Cuisine: 2 000 repas/j environ

Process:

- · 24 salles d'opérations
- 2 salles radiologie
- 1 salle IRM, 1 salle scanner
- · 16 postes de dialyse

- Hébergement 36%
- Administration et consultations 7%
- Plateau Technique (hors Bloc OP) 16%
- # Bloc Opératoire 10%
- Autres services 32%

MATERNITE DE METZ-THIONVILLE

Livré en 2012

CONSTRUCTION

- 1 bâtiment
- fondations superficielles
- R+4

MATERIAUX

- Ossature poteaux-poutres en béton armé
- Toiture terrasse dalles béton
- Isolation par l'intérieur

ENERGIE

CALCULS RT 2012

énergie primaire en kWh/m².an

- Cep: 227
- Chauffage: 76
- Refroidissement: 9

- ECS: 11 Eclairage: 49
- Auxiliaires: 82

EQUIPEMENTS DE PRODUCTION

- Chauffage : Réseau de chaleur
- Refroidissement : pompe à chaleur électrique
- ECS: Réseau de chaleur
- Eclairage et Auxiliaire : Electrique
- · Zone Climatique RT: H1b
- Altitude: 250m
- Classe d'exposition au bruit : BR1

SHON RT: 20 098 m2

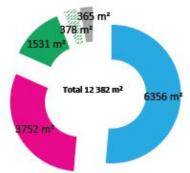
LOCALISATION: Thionville

USAGES

DONNEES COMPLEMENTAIRES

surface SHON: 20 765 m²

Hébergement :


155 lits

Cuisine: pas de cuisine

Process médical:

- 4 salles d'opérations
- 1 salle d'échographie

REPARTITION DES SURFACES UTILES

Hébergement 51%

- Administration et consultations 30%
- Plateau Technique (hors Bloc OP) 12%
- # Bloc Opératoire 3%
- Autres services 3%

Process médical:

2 salles IRM 2 salles scanner

36 salles d'opérations 3 salles radiologie

POLYCLINIQUE DU PARC Livraison en 2017 Démarche de certification HQE Excellent Bâtiment de consultation séparé (hors ACV) CONSTRUCTION fondations mixtes: semelles et pieux 1 bâtiment R+5 1 parking silo 325 places : hors ACV MATERIAUX ossature poteaux-poutres en béton armé toiture terrasse dalles béton bardage métallique Isolation par l'extérieur **ENERGIE** EQUIPEMENTS DE PRODUCTION CALCULS RT 2012 énergie primaire en kWh/m².an Chauffage: Gaz Cep: 225 ECS: 24 Refroidissement: Electrique Chauffage: 24 Eclairage: 54 ECS: Solaire & gaz Refroidissement Auxiliaires: 70 Eclairage et Auxiliaire : Electrique LOCALISATION: Toulouse Zone Climatique RT : H2c 81% SHON Surface RT: 21 113 m2 **USAGES** DONNEES COMPLEMENTAIRES REPARTITION DES SURFACES UTILES surface SDO: 35 036 m² Hébergement 40% Hébergement: 379 lits Administration et 498 m² 22% d'ambulatoire consultations 3% 9624,8 Plateau Technique (hors Total 23 816 m² Cuisine: 330 repas/j environ Bloc OP) 9%

Bloc Opératoire 16%

■ Autres services 31%

HÔPITAL PRIVE DE SAVOIE Livré en 2011 CONSTRUCTION 4 bâtiments fondations mixtes : superficielles et puits R+4 MATERIAUX Ossature poteaux-poutres en béton armé Toiture terrasse béton / toiture métallique Bardage métallique ITE standard **ENERGIE** EQUIPEMENTS DE PRODUCTION CALCULS RT 2005 énergie primaire en kWh/m².an Chauffage : Gaz ECS: 20 Cep: 221 Refroidissement : Electrique Chauffage: 64 Eclairage: 56 ECS: Solaire thermique et gaz Refroidissement: 1 Auxiliaires: 80 Eclairage et Auxiliaire : Electrique LOCALISATION: Annemasse Zone Climatique: H1c Altitude: 435 m Classe d'exposition au bruit BR3 94 % SHON USAGES DONNEES COMPLEMENTAIRES REPARTITION DES SURFACES UTILES surface SDO: 24 800 m² Hébergement 36% 2275 m² Hébergement: 333 lits Administration et 16% d'ambulatoire (54 lits) 5426 m² consultations 14% 2102 m² ■ Plateau Technique (hors Cuisine: 1 100 repas/j environ Total 15 012 m² Bloc OP) 21% Process médical: # Bloc Opératoire 14% 15 salles d'opérations 3102 m² Autres services 15% 2107 m²

CLINIQUE ARAGO Livré en 2014 Démolition puis construction neuve CONSTRUCTION 1 bâtiment fondations: semelles filantes R+4, 3 niveaux en sous-sol (2 de parking) MATERIAUX Ossature poteaux-poutre béton armé Toiture terrasse dalles pleines Façade béton préfabriqué ITE Standard **ENERGIE** CALCULS RT 2005 EQUIPEMENTS DE PRODUCTION énergie primaire en kWh/m².an Chauffage : Réseau de chaleur Cep:91 ECS: 20 Refroidissement : Electrique Chauffage: 19 Eclairage: 24 ECS: Réseau de chaleur Refroidissement: 6 Auxiliaires: 23 Eclairage et Auxiliaire : Electrique LOCALISATION: Paris Zone Climatique: H1a Altitude: 100 m Classe d'exposition au bruit : BR2 78% SHON USAGES REPARTITION DES SURFACES UTILES DONNEES COMPLEMENTAIRES SDO: 7 088 m2hors parking SDO parking: 3 137 m² Hébergement 35% Hébergement: 1426 m² Administration et 76 lits 1762 m² consultations 14% 13% d'ambulatoire Plateau Technique (hors Total 4 967 m Bloc OP) 9% Cuisine: pas de cuisine

8.10 CH ANTOINE GAYRAUD - CARCASSONNE

Process médical:

7 salles d'opérations

3 salles de radiologie 2 salles d'échographie # Bloc Opératoire 14%

■ Autres services 29%

CARCASSONNE - CH ANTOINE GAYRAUD Livraison 2014 Certification HQE Exceptionnel Réglementation Thermique 2012 CONSTRUCTION Fondations profondes R+3 et un niveau de sous-sol L'enveloppe du bâtiment protège des vents dominants MATERIAUX Ossature Poteaux-Poutres en béton armé Toiture sur dalle pleine en béton Bardage Aluminium ITE et finitions intérieures standards **ENERGIE** CALCULS RT 2012 **EQUIPEMENTS DE PRODUCTION** énergie primaire en kWh/m².an Chauffage: Réseau de chaleur Cep: 252.5 ECS: 18 Refroidissement : Electrique Chauffage: 26.9 Eclairage: 75.5 ECS: Réseau de chaleur + Solaire · Refroidissement: 36 Auxiliaires: 96.1 Eclairage et Auxiliaire : Electrique LOCALISATION: Carcassonne Zone Climatique RT: H3 Altitude: 110 m Classe d'exposition au bruit : BR1 88 % SHON USAGES DONNEES COMPLEMENTAIRES REPARTITION DES SURFACES UTILES surface SHON: 56 300 m² Hébergement 42% surface utile: 39 410 m2 5354 m Hébergement: Administration et 496 lits consultations 12% 16713 m² Plateau Technique (hors Total 39 410 m² Cuisine: 2 000 repas/j environ Bloc OP) 26% Process: # Bloc Opératoire 6% 10432 m 8 salles d'opérations 5 salles d'imagerie 1 salle IRM ■ Autres services 14% 2 salles scanner 24 postes de dialyse

8.11 HOPITAL PRIVE DE BOURGOGNE - DIJON

DIJON - HÔPITAL PRIVÉ DE BOURGOGNE Livraison en 2018 (Chantier en cours) Démarche de certification HOE CONSTRUCTION R+2 et un RDJ Fondations superficielles MATERIAUX Ossature Poteaux-Poutres en béton armé Toiture dalle pleine et bac acier Bardage métallique et ITE + enduit Finitions intérieures standards **ENERGIE** CALCULS RT 2012 énergie primaire en kWh/m².an EQUIPEMENTS DE PRODUCTION Chauffage : Réseau de chaleur Cep: 257,3 ECS: 48,8 Refroidissement : Electrique · Chauffage: 43,4 Eclairage: 70,6 ECS: Réseau de chaleur · Refroidissement : 21 Auxiliaires: 73,5 Eclairage et Auxiliaire : Electrique Zone Climatique RT: H1-c LOCALISATION: Dijon Altitude: entre 0 et 400 m Classe d'exposition au bruit : BR2 SHON RT: 18404 m2 **USAGES** INFOS COMPLEMENTAIRES REPARTITION DES SURFACES UTILES surface SDO: 20 753 m² Hébergement 33% Hébergement: 292 lits 3816 m² Administration et dont 70 ambulatoires 4937 m consultations 13% Cuisine: 950 repas/j environ Plateau Technique (hors Total 14 837 m² Bloc OP) 16% Process médical: # Bloc Opératoire 12% 1789 m² 21 Salles d'opération 1 IRM et 1 Scanner 3 salles de radiographie ■ Autres services 26% 2396 m²

CHOLET - PFPE (Pôle Femmes Parents Enfants)

Livré en 2014

CONSTRUCTION

- R+2 et un niveau de sous-sol
- Fondations superficielles

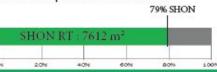
MATERIAUX

- Ossature Poteaux-Poutres en béton armé
- · Toiture sur dalle pleine en béton
- Bardage métallique et composite
- Finitions intérieures standards

ENERGIE

CALCULS RT 2005 énergie primaire en kWh/m².an

- Cep: 139Chauffage: 24
- Eclairage: 35Auxiliaires: 48


ECS:16

Refroidissement : 16

EQUIPEMENTS DE PRODUCTION

- Chauffage : Réseau de chaleur
 Refroidissement : Electrique
- ECS : Réseau de chaleur
- Eclairage et Auxiliaire : Electrique

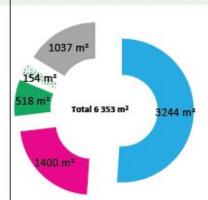
- · Zone Climatique RT : H2b
- Altitude: 184m
- Classe d'exposition au bruit : BR2

LOCALISATION : Cholet

USAGES

INFOS COMPLEMENTAIRES

surface SHON: 9600 m²
 surface utile: 6528 m²


Hébergement:

126 lits

Cuisine: pas de cuisine

Process:

- 2 Salles césariennes
- · 8 salles d'accouchement
- 1 salle soins intensifs néonatal

REPARTITION DES SURFACES UTILES

Hébergement 51%

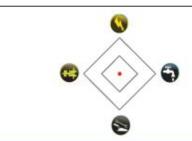
- Administration et consultations 22%
- Plateau Technique (hors Bloc OP) 8%
- # Bloc Opératoire 2%

■ Autres services 16%

POLE SANITAIRE DE L'OUEST Livraison 2018 Démarche libre HQE exceptionnel Photovoltaïque en autoconsommation Réhabilitation de maisons (hors ACV) CONSTRUCTION 3 bâtiments fondations superficielles R+4 MATERIAUX ossature poteaux-poutres en béton armé charpente métallique et terrasses dalle béton bardage métallique partiel, surtoiture bac Isolation principalement intérieure **ENERGIE** EQUIPEMENTS DE PRODUCTION CALCULS RT Chauffage: sans objet Refroidissement: Electrique ECS: solaire + pompe à chaleur + appoint électrique Eclairage et Auxiliaire : Electrique Bâtiment non soumis à la règlementation LOCALISATION : Saint Paul de la Réunion thermique USAGES DONNEES COMPLEMENTAIRES REPARTITION DES SURFACES UTILES surface SDO: 28 144 m² Hébergement 43% 3111 m² Hébergement: 310 lits Administration et 15% d'ambulatoire consultations 8% 867 m² 7366 m Plateau Technique (hors Total 16 950 m² Cuisine: 1 200 repas/j environ Bloc OP) 25% Process médical : # Bloc Opératoire 5% 6 salles d'opérations 181 m 3 salles radiologie ■ Autres services 18% 1 salle IRM, 2 salles scanner

CENTRE HOSPITALIER MARC JACQUET

Livraison 2017


CONSTRUCTION

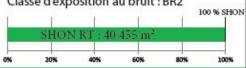
- fondation superficielles: semelles filantes
- R+4

MATERIAUX

- ossature poteaux-poutres en béton armé
- toiture terrasse dalles béton
- · bardage métallique
- ITE standard

ENERGIE

CALCULS RT 2012


énergie primaire en kWh/m².an

- Cep:280
- Cep:200
- Chauffage: 41
 Refroidissement: 9
- ECS : 29
- Eclairage : 78
 Auxiliaires : 123

EQUIPEMENTS DE PRODUCTION

- Chauffage : Réseau de chaleur
- Refroidissement : Electrique
- ECS : Réseau de chaleur
- Eclairage et Auxiliaires : Electrique

- · Zone Climatique RT : H1a
- · Altitude: 100 m
- · Classe d'exposition au bruit : BR2

LOCALISATION: Melun

USAGES

DONNEES COMPLEMENTAIRES

surface SDO: 43 835 m²

Hébergement:

516 lits

Cuisine: 2 000 repas/j environ

Process médical :

- 2 salles d'opérations
- 4 salles radiologie
- 2 salles IRM
- 3 salles scanner
- 20 postes de dialyse

- Hébergement 41%
- Administration et consultations 17%
- Plateau Technique (hors Bloc OP) 21%
- # Bloc Opératoire 2%

METZ - HOPITAL ROBERT SCHUMAN Livraison mars 2013 niveau THPE 2005 atteint Recyclage des eaux de dialyse (valorisation d'environ 12m3 d'eau / jours)

CONSTRUCTION

- 2 Ailes Hébergements + 1 Plateau Technique
- Fondations Profondes (pieux)
- R+5 Hébergement; R+4 Plateau Technique

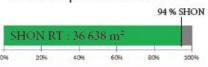
MATERIAUX

- Ossature Poteaux-Poutres en béton armé
- Toiture dalle pleine béton
- Bardages métalliques et Bakélisés
- ITE standard
- Finitions intérieures standards

ENERGIE

CALCULS RT 2005

énergie primaire en kWh/m².an


- Cep: 162
- Chauffage: 53
- Refroidissement: 9

- ECS: 25 Eclairage: 30
- Auxiliaires: 45

EQUIPEMENTS DE PRODUCTION

- Chauffage : Réseau de chaleur
- Refroidissement: Electrique
- ECS: Réseau de chaleur + Solaire
- Eclairage et Auxiliaire : Electrique

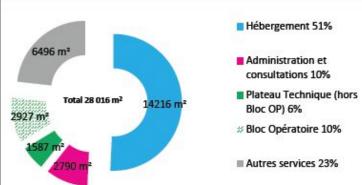
- Zone Climatique: H1b
- Altitude: 226 m
- Classe d'exposition au bruit : BR2

LOCALISATION: Metz

USAGES

DONNEES COMPLEMENTAIRES

surface SDO: 38 608 m²


Hébergement:

- 319 lits
- · dont 30 en ambulatoire

Cuisine: 1 400 repas/j

Process médical:

- 24 salles d'opérations
- 5 salles imagerie classiques
- 1 salle IRM, 1 salle scanner
- 72 postes de dialyse

HÔPITAL MUTUALISTE DES COTES D'ARMOR

- · Livraison 2016, chantier en cours
- · Niveau BBC 2005 atteint

CONSTRUCTION

- 1 bâtiment
- Fondations: semelles filantes
- R+3 avec 1 niveau partiel en sous-sol

MATERIAUX

- Ossature poteaux-poutres béton armé
- Toiture terrasse dalles pleines
- Bardage métallique
- ITE standard

ENERGIE

CALCULS RT 2005

énergie primaire en kWh/m².an

- Cep:127
- Chauffage: 31
- Refroidissement : 2
-
 - ECS: 15
 Eclairage: 26
 - Auxiliaires: 53

EQUIPEMENTS DE PRODUCTION

- Chauffage : gaz naturel
- Refroidissement : électrique
- ECS: solaire + gaz naturel
- Eclairage : électrique
- Auxiliaires : électrique

Zone Climatique : H2a

Altitude: 134m

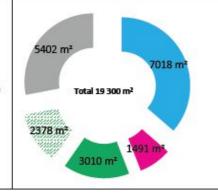
Classe d'exposition au bruit : BR2

83% SHON VRT : 19 445 LOCALISATION : Saint Brieuc, Côtes d'Armor

USAGES

DONNEES COMPLEMENTAIRES

surface SDO: 26 000 m²


Hébergement:

- 259 lits
- 5% d'ambulatoire

Cuisine: 1 000 repas/j environ

Process médical :

- 18 salles d'opérations
- 7 salles radiologie
- 2 salles IRM
- 2 salles scanner

- Hébergement 36%
- Administration et consultations 8%
- Plateau Technique (hors Bloc OP) 16%
- # Bloc Opératoire 12%
- Autres services 28%

CLINIQUE SAINT CÔME

Livré en 2009

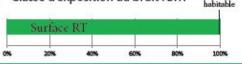
CONSTRUCTION

- fondations superficielles
- R+4, 1 niveau de sous-sol
- contrainte particulière

MATERIAUX

- ossature poteaux-poutres en béton armé
- toitures terrasses dalles pleines
- bardage métallique et ventelles terre cuite
- Isolation

ENERGIE


CALCULS RT 2000

énergie primaire en kWh/m².an

- C:241
- Chauffage: 55
- Refroidissement : sans objet
- ECS: 25 Eclairage: 90
- Auxiliaires: 22

EQUIPEMENTS DE PRODUCTION

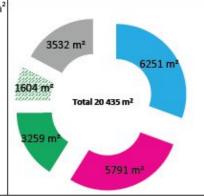
- Chauffage: gaz
- Refroidissement: sans objet
- ECS: gaz
- Eclairage et Auxiliaire : Electrique
- Zone Climatique RT: H1a
- Altitude: 150m
- Classe d'exposition au bruit : BR1 100% surface

LOCALISATION: Compiègne

USAGES

DONNEES COMPLEMENTAIRES

- surface habitable: 19520 m²
- SDO: 20 486 m²


Hébergement:

- 199 lits
- 10% d'ambulatoire

Cuisine: 750 repas/j environ

Process médical:

- 14 salles d'opérations
- 1 salle IRM
- 1 salle scanner
- 24 postes de dialyse

- Hébergement 31%
- Administration et consultations 28%
- Plateau Technique (hors Bloc OP) 16%
- # Bloc Opératoire 8%
- Autres services 17%

NANTES - CHU PLATEAU TECHNIQUE

Livraison 2013

CONSTRUCTION

- R+3
- 1 sous-sol et un RDJ
- Fondations profondes

MATERIAUX

- Ossature Poteaux-Poutres en béton armé
- Dalles pleines et Dalles précontraintes
- Bardages métalliques
- Revêtement sol résine coulé
- Finitions intérieures standards

ENERGIE

CALCULS RT 2005

énergie primaire en kWh/m².an

- Cep: 146,5
- Chauffage: 11,7
- · Refroidissement: 11
- 6. 1.....
- ECS:9,3
 Eclairage:53,7
- · Auxiliaires: 60,8

EQUIPEMENTS DE PRODUCTION

- Chauffage : Réseau de chaleur
- Refroidissement : Electrique
- ECS : Réseau de chaleur
- Eclairage et Auxiliaire : Electrique

- Zone Climatique RT : H2b
- Altitude: 350 m
- Classe d'exposition au bruit : BR2

LOCALISATION : Nantes

USAGES

INFOS COMPLEMENTAIRES

surface SHON: 26024 m²

Hébergement:

· 30 lits ambulatoires

Cuisine: pas de cuisine

Process médical:

- 21 salles d'opérations
- · 1 service pharmacotechnie

- Hébergement 13%
- Administration et consultations 4%
- Plateau Technique (hors Bloc OP) 18%
- # Bloc Opératoire 22%
- Autres services 42%

STRASBOURG - CLINIQUE RHENA

Livraison 2017 (chantier en cours)

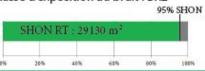
CONSTRUCTION

- R+8
- Fondations profondes

MATERIAUX

- Ossature Poteaux-Poutres en béton armé
- Toiture sur dalle pleine en béton
- Bardage métallique et façades rideaux
- Finitions intérieures standards

ENERGIE


CALCULS RT 2012 énergie primaire en kWh/m².an

- Cep: 238
- Chauffage: 46
- · Refroidissement: 32
- energie primaire en kvvn/m-.ar
 - ECS:22 • Eclairage:56
 - Auxiliaires:82

EQUIPEMENTS DE PRODUCTION

- Chauffage : Gaz
- Refroidissement : Electrique
- ECS : Gaz
- Eclairage et Auxiliaire : Electrique

- · Zone Climatique RT : H2b
- Altitude: 184m
- Classe d'exposition au bruit : BR2

LOCALISATION: Strasbourg

USAGES

INFOS COMPLEMENTAIRES

surface SDO: 30 600m²

Hébergement:

- 373 lits
- · dont 30 ambulatoires

Cuisine: 1 200 repas/j environ

Process:

- 28 salles d'opérations
- · 2 salles d'échographie
- 2 salles IRM
- 2 salles scanner

REPARTITION DES SURFACES UTILES ### Hébergement 44% Administration et consultations 15% Plateau Technique (hors Bloc OP) 13% Bloc Opératoire 14% Autres services 14%

9. ANNEXE 2: REGLES HQE PERFORMANCE SANTE

HQE PERFORMANCE REGLES POUR L'EVALUATION ENVIRONNEMENTALE DES BATIMENT DE SANTE

JUILLET 2015

SOMMAIRE

1.	INTRODUCTION6	3
2.	DEFINITION DU CHAMP DE L'ETUDE ACV D'UN BATIMENT HOSPITALIER6	4
	2.1. Equivalent fonctionnel, description du système6	4
	2.2. Frontières du système6	5
	2.2.1. Périmètre physique et temporel pris en compte	65
3.	METHODE DETAILLEE DU CALCUL DES IMPACTS6	8
	3.1. Contributeur COMPOSANTS6	8
	3.1.1. Cadre d'évaluation	68
	3.1.2. Renseignement des quantitatifs du projet	
	3.1.3. Renseignement des données environnementales	
	3.1.4. Modélisation des composants dépourvus de profil environnemental	
	3.1.5. Durée de vie des produits de construction et équipements	
	3.2. Contributeur ENERGIE	
	3.2.1. Cadre d'évaluation	
	3.2.2. Renseignement des quantitatifs du projet	
	3.3. Contributeur EAU74	
	3.3.1. Cadre d'évaluation	
	3.3.2. Renseignement des quantitatifs du projet	
	3.4. Contributeur CHANTIER	
	3.4.1. Cadre d'évaluation	
_	3.4.2. Renseignement des quantitatifs des projets	
4.	APPLICATION DES REGLES HQE PERFORMANCE SANTE 2015 AIA	6
5.	ANNEXES 77	
	5.1. Répartition en lots du contributeur Composants7	7
	5.2. Prise en compte des zones de process dans les calculs RT d'AIA84	4

1. INTRODUCTION

Ce guide d'application explique de manière opérationnelle comment réaliser une ACV d'un bâtiment hospitalier. Il est une déclinaison sectorielle des *Règles d'application HQE Performance pour l'évaluation environnementale des bâtiments neufs* (CSTB, mars 2015), basées sur la norme NF EN15978 et la série de normes ISO 14040.

Le document est organisé comme suit :

- définition du champ de l'étude ACV d'un bâtiment hospitalier
 - o Unité fonctionnelle, description du système
 - Description des frontières du système
 - Indicateurs environnementaux calculés
- Guide d'utilisation de la méthode détaillée du calcul des impacts
 - o Contributeur Composants
 - o Contributeur Energie
 - o Contributeur Eau
 - Contributeur Chantier

L'interprétation des résultats de l'ACV n'est pas couverte par ce document.

Il convient de préciser qu'à ce jour l'application simple de la norme NF EN15978 n'est pas complètement possible :

- Les bases de données génériques ne permettent pas toutes de calculer de façon opérationnelle les indicateurs de la norme et il est difficile de savoir si tous les jeux de données sont cohérents avec la norme en question,
- Les déclarations environnementales des produits de construction et des systèmes au format NF EN15804 sont encore rares.

2. DEFINITION DU CHAMP DE L'ETUDE ACV D'UN BATIMENT HOSPITALIER

2.1. EQUIVALENT FONCTIONNEL, DESCRIPTION DU SYSTÈME

La norme ISO14040 définit la notion d'unité fonctionnelle (UF) pour décrire le système étudié qui servira de référence pour l'analyse des résultats de l'ACV. Dans une UF, très souvent, la fonctionnalité est décrite succinctement et seule la fonction principale du système est caractérisée. Pour un bâtiment, par essence multifonctionnel, la norme EN15978 a donc préféré introduire la notion d'équivalent fonctionnel (EF), permettant de définir une « Unité fonctionnelle » multifonction.

L'équivalent fonctionnel (EF) est une représentation des caractéristiques et fonctionnalités requises du bâtiment dont l'évaluation environnementale est réalisée. La norme NF EN15978 précise que celui-ci doit inclure, à minima :

- La typologie du bâtiment; qui sera toujours « bâtiment à vocation sanitaire et sociale » dans le cadre du test HQE Performance Santé 2015
- Le profil d'utilisation : à minima le nombre de lits
- Les exigences fonctionnelles et techniques pertinentes du bâtiment : règlementation thermique à laquelle est soumis le projet
- La durée de vie requise du bâtiment « ReqSL » ; elle est de 50 ans dans la majorité des projets, cette valeur sera également retenue comme durée d'étude.

En complément, il est recommandé d'élaborer une « fiche d'identité » pour chaque projet hospitalier étudié. Elle éclairera l'interprétation des résultats d'ACV, en mettant en évidence les particularités de chaque projet :

Généralités

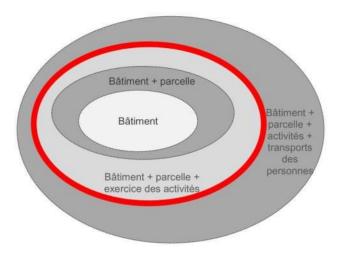
- Nom du projet et localisation
- Année de réception
- o Certifications éventuelles, démarche environnementale, profil environnemental
- Degré de connaissance du projet
 - Etape du projet à laquelle les calculs sont réalisés (selon typologie loi MOP)
 - Données utilisées pour chaque contributeur

Usage

- o Nombre de lits, part d'ambulatoire, nombre de salles d'opération
- o Graphique de répartition des surfaces utiles par typologie d'usage
- Nombre de salles comprenant des équipements techniques particuliers (radiologie, dialyse...)

Construction

- Surface totale
- Nombre de bâtiments
- Nombre d'étages et de niveaux en sous-sol
- o Principaux matériaux utilisés : structure, façades, isolation
- Type de fondations
- Contraintes particulières éventuelles
 - Géologiques, sismiques (zone sismique)
 - Urbanistiques (interdiction ou restriction d'usage de certaines solutions techniques, contraintes d'orientation, COS, places de parking obligatoires...)
 - Masques (contraintes d'accès au soleil et à la lumière)
 - Accès aux réseaux (eau, électricité, communication...)
 - Autres contraintes liées à une cartographie des risques pouvant nécessiter l'adaptation des solutions constructives (radon, termites, inondation, risque sécheresse...).

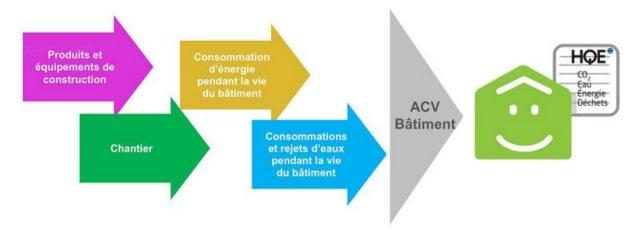

Energie

- o Zone climatique au sens de la RT, altitude
- o SHON RT, avec un graphique de répartition de surface RT/ hors RT
- Résultats du calcul thermique règlementaire
- o Equipements de production de chaud, de froid, d'électricité

2.2. FRONTIÈRES DU SYSTÈME

La définition des frontières de l'étude est essentielle dans le cadre d'une analyse de cycle de vie car les résultats ne s'étudient qu'au regard de celles-ci. Ces frontières ne sont pas seulement physiques, mais également temporelles (phases de production, construction, utilisation et fin de vie) et relatives aux « contributeurs » pris en compte.

2.2.1. PERIMETRE PHYSIQUE ET TEMPOREL PRIS EN COMPTE


Le périmètre recommandé prend en compte le bâtiment et sa parcelle, depuis les phases de production des composants jusqu'à la fin de vie du bâtiment, ainsi que l'exercice des activités qu'il abrite, hors déplacements des usagers (personnel et visiteurs) et déchets produits par les activités hébergées dans le bâtiment.

2.2.2. CONTRIBUTEURS CONSIDERES

Ce cadre méthodologique pour l'analyse du cycle de vie d'un bâtiment repose sur une approche par contributeurs telle qu'elle avait été proposée dans l'annexe technique de l'expérimentation HQE performance [HQE, 2012]. Les bâtiments hospitaliers seront donc décrits par l'intermédiaire d'un ensemble de contributeurs.

4 contributeurs sont retenus:

- Consommations et production d'énergie
- Produits et matériaux de construction et équipements
- Consommation et rejets d'eau
- Chantier

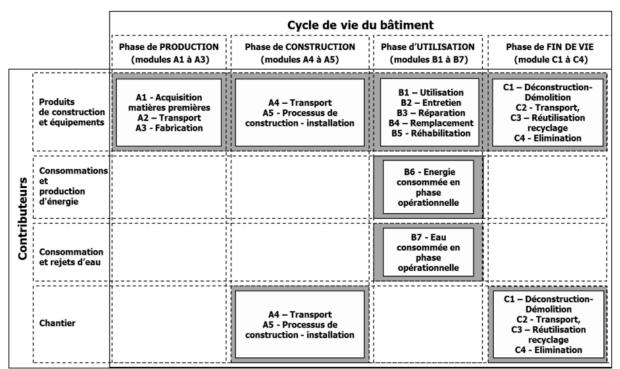


Figure 28 : Correspondance entre les phases de vie des bâtiments et les contributeurs pris en compte

Le contributeur **Transport des usagers** est écarté, faute d'outil suffisamment performant pour l'évaluer.

Le contributeur **Production et gestion des déchets d'activité** est également écarté, par manque d'informations sur les quantités générées et à défaut de pouvoir les classer avec pertinence.

La méthodologie de description de ces contributeurs est présentée dans ce document telle qu'elle était rédigée dans la version des règles d'application HQE Performance de 2012.

2.2.3. Indicateurs environnementaux calcules

Les Règles d'application HQE Performance pour l'évaluation environnementale des bâtiments neufs (CSTB, mars 2015) récapitulent les indicateurs environnementaux qui seront calculés grâce aux ACV des bâtiments, ainsi que leur degré de précision, comme suit :

En croisant les thématiques prioritaires citées dans le code de la construction et de l'habitation (CCH article L111-9) (énergie, changement climatique, déchets, et consommation d'eau) avec les observations de rigueur scientifique et de disponibilité des données, il paraît possible de dresser 4 listes d'indicateurs :

- 1. Indicateurs calculables dès 2015 avec un bon niveau de rigueur scientifique et de complétude :
 - Réchauffement climatique
 - Utilisation totale de ressources d'énergie primaire non renouvelables
- 2. Indicateurs calculables dès 2015 avec un niveau de complétude acceptable mais nécessitant des approximations scientifiques :
 - Consommation d'eau
 - Déchets dangereux éliminés
 - Déchets non dangereux éliminés
 - Acidification des sols et de l'eau
- 3. Indicateurs calculables dès 2015 mais dont le calcul est peu rigoureux scientifiquement et/ou le niveau de complétude est trop faible (en l'état actuel des données disponibles) :
 - Utilisation totale de ressources d'énergie primaire
 - Utilisation totale de ressources d'énergie primaire renouvelables
 - Formation d'ozone photochimique
 - Appauvrissement de la couche d'ozone
 - Eutrophisation
 - Déchets radioactifs éliminés
 - Pollution de l'eau
 - Pollution de l'air

Tous les autres indicateurs sont difficilement calculables à l'échéance 2015 (en l'état actuel des données disponibles).

3. METHODE DETAILLEE DU CALCUL DES IMPACTS

3.1. CONTRIBUTEUR COMPOSANTS

3.1.1. CADRE D'EVALUATION

Le périmètre d'étude comprend tous les ouvrages de bâtiment et génie civil situés sur la parcelle, le mobilier est exclu.

Le découpage en lots à retenir pour la description d'un bâtiment hospitalier se base sur les 13 lots des règles HQE Performance 2015, auxquels s'ajoute un 14^è lot spécifique au secteur hospitalier :

- 1. VRD (Voirie et Réseaux Divers) et aménagements extérieurs de la parcelle
- 2. Fondations et infrastructure
- 3. Superstructure Maconnerie
- 4. Couverture Etanchéité Charpente Zinguerie
- 5. Cloisonnement Doublage Plafonds suspendus Menuiseries intérieures
- 6. Façades et menuiseries extérieures
- 7. Revêtements des sols, murs et plafonds Chape -Peintures Produits de décoration
- 8. CVC (Chauffage Ventilation Refroidissement eau chaude sanitaire)
- 9. Installations sanitaires
- 10. Réseaux d'énergie (courant fort)
- 11. Réseaux de communication (courant faible)
- 12. Appareils élévateurs et autres équipements de transport intérieur
- 13. Equipements de production locale d'énergie
- 14. Equipements spécifiques au secteur hospitalier : fluides médicaux, transport pneumatique...

La liste des éléments à prendre en compte correspond à tous les éléments de gros œuvre et second œuvre nécessaires à l'usage du bâtiment. Une liste de contrôle, non exhaustive, est proposée en Annexe 1.

Les consommations d'eau et d'énergie dues au fonctionnement des produits de construction sont à comptabiliser dans le contributeur correspondant, et non via le contributeur Composants.

3.1.2. RENSEIGNEMENT DES QUANTITATIFS DU PROJET

Lors de la description détaillée des produits de construction et des équipements du bâtiment, l'évaluateur doit renseigner les quantités associées à tous les éléments constitutifs du bâtiment et de sa parcelle, identifiés au §2.1.1. Ces quantités devront être documentées. En l'absence de quantités ou d'une unité difficilement exploitable, l'évaluateur devra utiliser un ratio qu'il jugera le plus performant pour l'étude. Les éléments non pris en compte doivent également être identifiés et consignés dans la documentation du projet.

3.1.3. RENSEIGNEMENT DES DONNEES ENVIRONNEMENTALES

Le calcul des impacts environnementaux liés aux produits, matériaux de construction et équipements est obtenu en multipliant chaque quantité mise en œuvre dans le bâtiment par un profil environnemental (Déclaration Environnementale de produit de construction ou d'équipement).

Les profils environnementaux associés pourront être :

- Des données environnementales spécifiques :
 - o Des FDES au sens de la NF EN 15804/A1 et son complément national XP P01-64/CN
 - Des FDES au sens de la NF P01-010 (valables jusqu'à leur fin de validité (au plus tard au 1 er juillet 2019)

- o Des PEP (Profil Environnemental Produit) issus du Programme PEP ecopassport
- Des données environnementales génériques, représentatives d'un produit type

L'association de données environnementales spécifiques sera préférée si l'évaluateur dispose d'informations assez précises sur le produit et d'une déclaration environnementale adaptée accessible. Dans tous les cas, l'association des données environnementales sera justifiée et documentée. La source de chaque donnée environnementale utilisée devra être identifiée dans la documentation du projet.

3.1.4. MODELISATION DES COMPOSANTS DEPOURVUS DE PROFIL ENVIRONNEMENTAL

De nombreux équipements techniques et produits de construction ne disposent pas encore à ce jour de déclarations environnementales, ni spécifique ni générique, permettant de les modéliser directement. Plutôt que d'omettre ces composants dans l'ACV des bâtiments, et donc de négliger totalement les impacts qu'ils engendrent, le modélisateur préfèrera en donner, dans la mesure du possible, une modélisation approchée.

Dans ce cas le modélisateur proposera, à l'aide de toutes les données disponibles sur le projet (CCTP, matériaux prescrits, fiches techniques des composants...), sa propre modélisation approchée, afin de prendre en compte un maximum de composants avec une erreur qu'on s'efforcera de minimiser. Cela nécessite :

- De proposer un ou plusieurs profils environnementaux de substitution, parmi les données disponibles sur INIES: ce choix se base principalement sur la nature des matériaux concernés
- D'estimer, pour ce(s) profil(s) de substitution, le(s) quantitatif(s) correspondant à une Unité Fonctionnelle (UF) du composant à modéliser.

Toutes les modélisations proposées seront explicitées dans un document dédié, comprenant les justifications des choix de profils et de calculs des quantités.

3.1.5. Duree de vie des produits de construction et equipements

- La DVR (Durée de Vie de Référence) est la durée de vie renseignée dans les données environnementales.
- La DVE (Durée de Vie Estimée) des produits de construction et des équipements est la durée de vie renseignée par l'évaluateur pour chaque élément.

Pour le règles HQE Performance Santé : la DVE sera considérée par défaut comme égale à la DVR.

3.1.6. ALLOCATION ENTRE ENTITES D'USAGES

L'évaluation environnementale peut porter sur plusieurs entités d'usage distinctes, au sein d'un bâtiment accueillant plusieurs entités d'usage. Dans ce cas, des règles spécifiques d'allocation s'appliquent pour l'évaluation du contributeur Composants. Dans le cadre de ces règles, le cas de la dissociation de l'entité Hébergement et de l'entité Médico-Technique pourra s'avérer pertinente si suffisamment de données sont disponibles.

Dans la mesure du possible, les produits et équipements doivent être dissociés suivant leur destination, c'est-à-dire être affectés par entité d'usage. Les cloisonnements ou revêtements peuvent par exemple ainsi être distingués.

Pour les produits et équipements ne pouvant pas être affectés à une entité d'usage plutôt qu'à une autre (les fondations, la superstructure, la couverture par exemple), les impacts environnementaux associés sont alloués à chaque entité d'usage au prorata :


- du nombre de prises pour le lot Fluides Médicaux, lorsque leur répartition est connue
- pour les autres lots, d'éventuels autres paramètres pertinents qui seront justifiés et documentés
- à défaut de paramètres plus pertinents, de leur surface

3.2.1. CADRE D'EVALUATION

Le contributeur Consommations d'énergie couvre toutes les consommations d'énergie du bâtiment en exploitation. Pour définir plus précisément le périmètre retenu, il faut d'abord décrire les différents types de consommation d'énergie à inclure. L'approche méthodologique retenue conduit à distinguer deux types de consommations d'énergie : les consommations d'énergie liées aux usages immobiliers ou et les consommations d'énergies liées aux usages mobiliers.

On entend par usage mobilier tous les usages de l'énergie qui sont possibles du fait de l'ajout de produit(s) après la livraison du bâtiment.

On entend par usage immobilier tous les usages de l'énergie qui sont possibles immédiatement après la livraison du bâtiment sans aucun ajout de la part de l'exploitant ou de l'usager. Certains de ces usages, comme le chauffage, sont règlementés et pris en compte actuellement dans la réglementation thermique 2012, d'autres ne le sont pas, comme la mobilité verticale des ascenseurs.

Toutefois, les **spécificités du secteur hospitalier** devront être prises en compte pour les usages immobiliers règlementés. En effet, les établissements hospitaliers comportent des **zones de process** concernées par ces usages, mais partiellement ou totalement exclues des calculs règlementaires (salles d'opération, salles d'imagerie...). Ainsi, pour reprendre l'exemple du chauffage :

- le résultat du calcul règlementaire du projet ne tient pas rigoureusement compte des zones de process chauffées
- la consommation totale d'énergie liée au chauffage (estimée par exemple par STD) en tient compte, mais ne correspond donc plus strictement à un usage immobilier règlementé.

L'Annexe 2 présente la méthodologie de calcul thermique règlementaire a utiliser pour les projets concernés.

Ainsi, les postes de consommation d'énergie considérés dans les *Règles d'application HQE Performance pour l'évaluation environnementale des bâtiments neufs* (CSTB, mars 2015) deviennent, pour le secteur hospitalier :

- Postes de consommation d'énergie des usages immobiliers partiellement couverts par la réglementation thermique
 - o le chauffage
 - o la production d'eau chaude sanitaire
 - o les auxiliaires (de ventilation et de distribution)
 - o le refroidissement
 - l'éclairage
- Postes de consommation d'énergie des usages immobiliers liés à l'activité, par exemple
 - o la distribution de fluides médicaux, le transport pneumatique
 - o les ascenseurs et monte-charges, les escaliers mécaniques, les monte-malades
 - o les occultations mécaniques (volets roulants motorisés, portes de garage, portiers, protections solaires)
 - o les systèmes de contrôle d'accès et de sécurité
 - o les systèmes communicants (réseau de communication, réseau informatique et de gestion, centraux téléphoniques)
 - o autres : arrosage automatique, compteurs d'eau à impulsion
- Les postes de consommation d'énergie des usages mobiliers, par exemple
 - Blanchisserie
 - Service de restauration
 - o Equipements techniques médicaux (scanner, IRM etc.)
 - o Equipements informatiques et audiovisuels

3.2.2. RENSEIGNEMENT DES QUANTITATIFS DU PROJET

Les données disponibles relatives au contributeur Energie sont très variables d'un projet à l'autre. Ainsi, nous disposerons :

- Pour les 20 projets : du calcul règlementaire de l'époque, process partiellement exclu
- Pour certains projets en phase conception : d'une Simulation Thermique Dynamique (STD), incluant les zones de process
- Pour quelques projets livrés : de relevés plus ou moins détaillés des consommations réelles

On distinguera donc les trois types d'études suivants, de la moins performante à la plus performante :

Etude estimative par ratios

Dans le cas où seul un calcul RT est disponible, ses valeurs seront mentionnées en commentaire du contributeur Energie et utilisées comme base de l'étude. Afin de prendre en compte les zones de process dans les usages immobiliers règlementés, et d'estimer les consommations liées à l'activité, plusieurs coefficients correctifs interviendront :

- un coefficient $\alpha_{pro}(P)$, quantifiant l'importance du process dans le projet P. Sa valeur est donc fonction du projet P, contrairement aux coefficients suivants qui sont génériques (issus d'un étalonnage basé sur des relevés de consommations réelles).
- six coefficients α_i , quantifiant la surconsommation dans les locaux de process, pour chaque poste immobilier règlementé
- un coefficient α_{acti}, quantifiant la part de consommations liées à l'activité, hors process
- un coefficient α_{actipro}, quantifiant la part de consommations liées à l'activité de process
- un coefficient α_{immo} (compris entre 0 et 1), quantifiant la part des consommations liées aux usages immobiliers.

Estimations des consommations d'un projet P à partir des coefficients correctifs :

On obtiendra ainsi, à partir de chaque valeur de consommation d'énergie finale $c_i(P)$ issue du calcul RT, une valeur estimée $E_i(P) = c_i(P)(1 + \alpha_{pro}(P)\alpha_i)$ que l'on utilisera pour l'étude du projet.

La consommation électrique liée à l'activité sera estimée par $E_{acti}(P) = (\alpha_{acti} + \alpha_{pro}(P)\alpha_{actipro})M$, où M est une moyenne de consommation électriques du secteur santé, estimée à 200kWh/m².an. (dans le cas d'un calcul des consommations totales, on veillera donc à multiplier M par la SHON du bâtiment).

On répartira ensuite
$$\mathsf{E}_{\mathsf{acti}}$$
 en $\;\; E_{immo}(P) = \alpha_{immo} E_{acti}(P) \; \text{et} \; E_{mobi}(P) = (1 - \alpha_{immo}) E_{acti}(P) \; \text{et} \; E_{mobi}(P) = (1 - \alpha_{immo}) E_{acti}(P) \; \text{et} \; E_{mobi}(P) = (1 - \alpha_{immo}) E_{acti}(P) \; \text{et} \; E_{mobi}(P) = (1 - \alpha_{immo}) E_{acti}(P) \; \text{et} \; E_{mobi}(P) = (1 - \alpha_{immo}) E_{acti}(P) \; \text{et} \; E_{mobi}(P) = (1 - \alpha_{immo}) E_{acti}(P) \; \text{et} \; E_{mobi}(P) = (1 - \alpha_{immo}) E_{acti}(P) \; \text{et} \; E_{mobi}(P) = (1 - \alpha_{immo}) E_{acti}(P) \; \text{et} \; E_{mobi}(P) = (1 - \alpha_{immo}) E_{acti}(P) \; \text{et} \; E_{mobi}(P) = (1 - \alpha_{immo}) E_{acti}(P) \; \text{et} \; E_{mobi}(P) = (1 - \alpha_{immo}) E_{acti}(P) \; \text{et} \; E_{mobi}(P) = (1 - \alpha_{immo}) E_{acti}(P) \; \text{et} \; E_{mobi}(P) = (1 - \alpha_{immo}) E_{acti}(P) \; \text{et} \; E_{mobi}(P) \; \text{et} \; E_{mobi}(P) = (1 - \alpha_{immo}) E_{acti}(P) \; \text{et} \; E_{mobi}(P) \; \text{et} \; E_{mobi}($

Valeurs des coefficients correctifs :

En admettant que le nombre de salles d'opération est un bon indicateur de l'importance du process médical, et que la cuisine est le principal poste de process non médical, on construit une définition de $\alpha_{pro}(P)$. D'après des statistiques disponibles sur le site d'Energie+ 5 , on peut estimer que la consommation d'énergie engendrée par la production d'un repas par jour pendant un an dans la cuisine collective d'un hôpital équivaut à environ 0,004 fois celle engendrée par le fonctionnement d'une salle d'opération pendant un an. On propose donc de définir $\alpha_{pro}(P)$ comme ceci :

$$\alpha_{pro}(P) = \frac{nb \text{ de salles d'opération} + 0,004 * nb \text{ de repas par jour}}{nombre de lits}$$

Les valeurs des autres coefficients correctifs sont alors étalonnées à partir d'études comparatives empiriques menées sur des projets pour lesquels sont disponibles à la fois le calcul RT et une STD, que l'on suppose plus proche de la réalité que la RT, ou des relevés de consommations réelles. Une fois leurs valeurs fixées, elles sont intégrées dans un tableur Excel à des fins de capitalisation.

Etude estimative par STD

Dans le cas où une STD est disponible, ses valeurs seront directement utilisées pour l'étude. On mentionnera toutefois, à titre informatif, les valeurs du calcul RT en commentaire du contributeur Energie.

Etude des consommations réelles

Dans le cas où les consommations réelles de l'établissement sont connues, elles seront utilisées comme base de l'étude, et les valeurs du calcul RT seront mentionnées en commentaire du contributeur énergie.

Si ces consommations sont disponibles avec le détail par poste nécessaire, elles seront utilisées directement. Si le détail des postes de consommations n'est pas disponible, on réalisera l'étude estimative par ratios, puis on répartira la consommation réelle dans les différents postes au pro rata des résultats estimatifs.

Remarque

Il est possible de se trouver dans un cas de figure intermédiaire (par exemple une STD ne fournissant pas d'estimation des usages liés à l'activité). On appliquera alors l'étude la plus performante disponible pour chaque poste, en détaillant en commentaire la méthode utilisée.

⁵ http://www.energieplus-lesite.be/index.php?id=11068 et http://www.energieplus-lesite.be/index.php?id=11442

3.3. CONTRIBUTEUR EAU

3.3.1. CADRE D'EVALUATION

Les consommations d'eau doivent prendre en compte :

- Entretien des locaux (lorsqu'il n'est pas déjà inclus dans les données environnementales des produits de construction et équipements) ;
- Arrosage des végétaux associés au bâtiment (façade et toiture végétalisée, patios, etc.);
- Equipements de chauffage, de ventilation de conditionnement d'air (brumisation de patios, double flux adiabatique,...).
- Arrosage des espaces verts ;
- Sanitaires et lavabos ;
- Eviers, douches, baignoires;
- Et en fonction du type d'usage :
 - o Appareils électroménagers (lave-linge, lave-vaisselle, ...);
 - Equipement de cuisine collective
 - o Equipements techniques spécifiques au secteur hospitalier (postes de dialyse ...)

Les rejets pris en compte doivent au moins couvrir les rejets des équipements pris en compte dans le calcul des consommations d'eau. Par convention, les volumes de rejets sont estimés égaux aux consommations.

Les procédés d'épuration des rejets liquides, qu'ils soient sur la parcelle ou extérieurs à celle-ci, sont inclus dans les frontières de l'évaluation.

3.3.2. RENSEIGNEMENT DES QUANTITATIFS DU PROJET

Pour réaliser l'évaluation des impacts du contributeur Consommations et rejets d'eau, il est nécessaire de renseigner les quantités d'eau consommées et rejetées pendant l'exploitation du bâtiment. Selon l'état d'avancement du projet et le niveau d'information détenu, deux types d'étude sont décrits cidessous, ayant chacun leur niveau d'exigence en terme de données relatives au projet.

Etude estimative:

L'étude estimative correspond à la consommation moyenne d'eau par typologie d'usage, établie à partir de retours d'expérience et de statistiques par les ingénieurs d'AIA.

Le tableau est composé de la manière suivante :

Secteurs	Variable		Ratio	Consommation L/jour	conso annuel m3
Hospitalisation	Lits et places	120	Litres/Jour*lit	0	0
Bloc opératoire	Salles	300	Litres/jour*SOP	0	0
Cuisine	repas/Jour	40	Litres/jour*repas	0	0
Autres services	Lits et places	50	Litres/Jour*lit	0	0
Traitement d'eau Dialyse	postes	400	Litres/Jour*poste	0	0
Récupération d'eau de dialyse				0	0
			TOTAL	0	0

Consommations réelles :

Lorsque la consommation réelle du projet est connue, elle sera renseignée directement dans la modélisation.

3.4. CONTRIBUTEUR CHANTIER

3.4.1. CADRE D'EVALUATION

Pour le chantier de construction, des éléments sur la mise en œuvre des produits et équipements et sur la gestion des déchets de chantier sont déjà inclus dans les déclarations environnementales des composants, associées dans le contributeur Composants.

Il s'agit donc ici de chiffrer les éléments de chantier non pris en compte dans les déclarations environnementales des composants :

- Volumes de terres mis en jeu lors des travaux de terrassement
- Consommations et rejets d'eau
- Amortissement matériel des équipements lourds
- Consommations d'énergie des cantonnements
- Consommations d'énergie des équipements lourds et des engins de chantier pour le terrassement, le forage de puits, le transport des équipements et des terres,
- Traitement des déchets issus du chantier, hors chutes de produits de construction ou d'équipements.

Le déplacement du personnel sur chantier est hors du périmètre de l'évaluation.

Le chantier de déconstruction/démolition du bâtiment contribue également au cycle de vie du bâtiment évalué. Par soucis de simplification, le chantier de déconstruction ne sera comptabilisé qu'au travers des fins de vie des produits, comptabilisés dans les déclarations environnementales des composants.

3.4.2. RENSEIGNEMENT DES QUANTITATIFS DES PROJETS

Les informations de suivi de chantier sont très variables d'un projet à l'autre. A minima, on renseignera les volumes de terrassement estimés, en précisant l'origine de cette estimation.

Pour les chantiers ayant bénéficié d'un suivi, on renseignera, dans la mesure du possible, les volumes réels de terrassement et les consommations d'eau et d'électricité. Si des informations relatives aux déchets de chantier sont disponibles, on n'exploitera que celles qui concernent les travaux de terrassement, car les autres déchets sont pris en compte dans les déclarations environnementales des composants.

4. APPLICATION DES REGLES HQE PERFORMANCE SANTE

La méthode détaillée du calcul des impacts environnementaux, présentée au paragraphe 3, énonce les règles à suivre dans les principaux cas susceptibles d'être rencontrés lors de l'étude ACV d'un bâtiment hospitalier. Cependant, il est difficile de prévoir de façon exhaustive tous les cas particuliers possibles : le modélisateur pourra être amené à proposer lui-même des solutions pertinentes face à des situations non décrites précédemment. Il prendra alors soin de justifier du bon sens de celles-ci dans la documentation des projets concernés.

Par ailleurs, une vigilance toute particulière sera prêtée aux risques de double comptage entre les différents contributeurs, notamment à certains profils environnementaux qui comptabilisent des impacts relevant d'autres contributeurs selon les règles HQE Performance Santé.

5.1. REPARTITION EN LOTS DU CONTRIBUTEUR COMPOSANTS

Nom retenu pour le lot	Types de composants devant être intégrés à ce lot	Commentaires
	Réseau gaz sur parcelle	yc leur raccordement
	Réseau eau potable sur parcelle	yc leur raccordement
	Réseau de chaleur ou de froid (sur parcelle)	yc leur raccordement au réseau urbain
	Réseau électrique (limite parcelle- bâtiment)	yc leur raccordement yc les fourreaux
	Réseau de télécommunications (limite parcelle- bâtiment)	yc leur raccordement yc les fourreaux
	Réseau d'évacuation et d'assainissement des eaux pluviales, eaux usées et eaux vannes	yc leur raccordement yc pompe de relevage des eaux usées, si nécessaire
	Séparateurs à hydrocarbures et autres systèmes de prétraitement des eaux usées sur site	
	Système d'assainissement autonome	
	Récupération et stockage des eaux pluviales	yc bassin de rétention des EP, bassin d'orage (à l'air libre ou enterré), cuves, pompes, canalisations
1. VRD (Voirie et Réseaux Divers)	Structures enterrées ou semi-enterrées telles que bassins de rétention d'eaux pluviales	dans ou hors emprise des bâtiments
et aménagements	Cuves et citernes pour combustibles, silos à bois	pour stockage fioul, GPL, granulés de bois
extérieurs de la parcelle	Voirie / Voie d'accès (sur parcelle), chemins piétonniers	yc sous-couches, revêtements, bordures, trottoirs
	Aires de stationnement et garages extérieurs couverts ou fermés (voitures, vélos)	
	Ouvrages de soutènement des sols sur la parcelle : murs de soutènement, tirants d'ancrage, etc.	
	Terrasse et petits murets de jardins aménagés directement sur le sol (dalle coulée, dallages)	petits ouvrages de maçonnerie
	Autres revêtements extérieurs	ex: sol pour aire de jeu, dallage sur plots, platelage bois,
	Clôture : grilles, garde-corps, claustras, portillons, portails, murs et murets	en principe en limite de parcelle
	Puits canadien, réseau de géothermie horizontale	
	Pompage d'eau	si nécessité de pomper l'eau, si nappe trop proche, pour protéger les sous-sols. (équipement hydraulique, mécanique et électrique des stations de pompage d'eau)

	Eclairage extérieur (sur parcelle)	réseau et lampadaires, hublots, balises, etc.
	Aménagements des espaces verts	réseau d'arrosage automatique, grilles d'arbre, jardinières, etc.
	Mobilier urbain (sur parcelle)	bancs, abris, corbeilles, etc.
2. Fondations et	Fondations des bâtiments : béton de propreté, soubassement, longrines, hérisson, imperméabilisation, traitement anti-termite, drainage périphérique, étanchéité , semelles, pieux, micro pieux, puits, murs de soutènement, autres fondations spéciales, radiers, cuvelages, fosses, sondes et puits géothermiques, etc.)	Adaptation au sol – Terrassement - Fouilles> contributeur Chantier
infrastructure	Structure porteuse pour parkings et locaux souterrains : poteaux, poutres, dalles, etc.	
	Murs de soubassement, murs des sous-sols	
	Rampes d'accès (pour véhicules) et marches permettant l'accès au bâtiment, escaliers des soussols, parois de la cage d'ascenseur	les escaliers de secours et les escaliers de façade font partie du lot 3
	Murs extérieurs en élévation (maçonnerie, voiles, etc.)	yc armatures, chaînages, joints. Les façades porteuses sont à intégrer ici
	Eléments porteurs verticaux : poteaux, murs de refend	yc armatures si BA
	Eléments porteurs horizontaux : poutres, linteaux, etc.	yc armatures si BA
Superstructure Maçonnerie	Dallages, planchers, dalles, bacs acier pour planchers (plancher collaborant), dalles de compression, dalle de toiture-terrasse, balcons	yc armatures si BA yc rupteurs de ponts thermiques
	Rupteurs thermiques et acoustiques	
	Escaliers intérieurs et extérieurs, rampes d'accès piétons (accessibilité)	yc armatures si BA. Les escaliers de secours - lourds (béton) ou légers (métal) - sont également à mettre ici
	Charpente	yc éléments d'assemblage
	Etanchéité de toiture ou de toiture-terrasse	yc protection de cette étanchéité mais hors isolation thermique (lot 5)
	Eléments de couverture pour toitures en pente	Redu
4. Couverture – Etanchéité -	Dallage, revêtement, protection lourde, ombrière de toiture-terrasse	la toiture-terrasse peut être accessible ou pas (la dalle porteuse est en lot 3)
Charpente -	Complexe pour toiture végétalisée	
Zinguerie	Cheminées, lanterneaux, exutoires, désenfumage, etc. en toiture	les fenêtres de toit sont dans le lot 6 les panneaux solaires sont ailleurs
	Evacuations d'EP en limite de bâtiment : chéneaux et descentes de gouttière	
	Autres ouvrages de zinguerie	

	Portes intérieures, portes palières, portes coupe- feu, portes en sous-sol, portes des garages individuels en sous-sol	yc quincaillerie, serrurerie (peinture des portes dans le lot 7)
	Cloisons de distribution, fixes ou mobiles/amovibles	yc ossature métallique s'il y a lieu
	Cloisonnement des gaines techniques, divers encloisonnements	yc ossature métallique s'il y a lieu y Y/c isolant acoustique (revêtements dans le lot 7)
5. Claisannement	Plafonds suspendus et plafonds sous combles	y compris système de fixation / suspension, et remplissage du plénum si non pris en compte ailleurs (isolant thermique ou acoustique, protection au feu) yc plafonds tendus.
	Coffres de volets roulants	yc isolation thermique
 Cloisonnement Doublage - Plafonds 	Enduits intérieurs et doublages sans isolant des murs et cloisons (plaques de plâtre)	
suspendus - Menuiseries intérieures	Isolation thermique (combles/toiture, murs extérieurs, planchers bas, dalles, etc.)	Attention, on considère ici l'isolation thermique intérieure. Attention pour les éléments d'isolation répartie, les éléments ayant une fonction structurelle son à comptabiliser dans le lot 3
	Isolation acoustique (murs, cloisons, planchers)	pour l'isolement acoustique mais aussi la correction acoustique interne des espaces
	Pare vapeur, film étanchéité à l'air	
	Matériaux de protection contre l'incendie	yc en sous-sol
	Garde-corps, main-courantes	équipant notamment les escaliers, ou les circulations
	Planchers surélevés sur dalles à plots	= faux-planchers (dans les bureaux par ex, les salles informatiques)
	Placards préfabriqués ou menuisés	
	Isolation des murs extérieurs par l'extérieur (ITE)	yc. protections, renforts et des enduits de façade qui vont avec
	Enduit extérieur	
	Lasure & vernis extérieurs	
Façades et menuiseries	Peinture d'éléments extérieurs	notamment les éléments métalliques ye protection anticorrosion peinture d'éléments de façade (sous-face des balcons par ex)
extérieures	Façades légères (non porteuses)	yc fixations, colles et mastics
	Bardages, parements de façade, résilles	yc fixations, colles et mastics
	Grilles de ventilation	celles donnant sur l'extérieur
	Pare-pluie	
	Habillage des tableaux et voussures	
	Portes de garage, collectives ou donnant sur l'extérieur	
		-ti-

		-
	Portes d'entrée, portes de service sur locaux non chauffés, portes (véhicules et piétons) du parking souterrain, issues de secours	c'est-à-dire toutes portes donnant sur l'extérieur, tous matériaux
	Fenêtres, portes-fenêtres, fenêtres de toit, baies vitrées fixes	yc les vitrages associés yc les vitrines des locaux commerciaux
	Fermetures (volets battants, volets roulants, persiennes)	
	Protections solaires, Brise-soleil, Brise-vue, stores, rideaux d'occultation	qu'ils soient situés à l'extérieur ou à l'intérieur des baies vitrées
	Appuis de baie	
	Garde-corps, claustras, grilles et barreaux de sécurité	yc habillage des balcons et terrasses en hauteur
	Vérandas, serres, couvertures vitrées d'atriums, coupoles	ossature et matériaux de remplissage (verriers le + souvent) toutes parties, ouvrantes ou non
	Chapes flottantes ou désolidarisées	L'isolation thermo-acoustique sous chape est dans le lot 5
	Ragréages	
	Sous-couches acoustiques (résiliant sous revêtements)	
7. Revêtements	Revêtements de sol souples	yc colle.
des sols, murs et	Revêtements de sol durs	yc colle, produits de scellement
plafonds - Chape -Peintures -	Revêtements de sol coulés, de type industriel, peints	ex de sols peints : parkings souterrains, locaux techniques
-Peintures - Produits de décoration	Plinthes, barres de seuils	
decoration	Revêtement muraux (peinture murs intérieurs, parements divers, faïences murales, etc.)	yc produits de mise en œuvre (colle, joints) ex de parements intérieurs : briquettes, lambris
	Peintures de plafond	
	Lasures & vernis intérieurs	yc peinture des portes et fenêtres
	Chauffage et/ou rafraîchissement et/ou production d'eau chaude sanitaire : chaudières gaz, fioul, biomasse ou pompes à chaleur	yc Poèle à bois, Cheminée, insert, cogénérateur
	Production d'eau chaude sanitaire : chauffe-eau thermodynamique, électrique, gaz ou chauffe-eau solaire individuel	
8. CVC (Chauffage – Ventilation – Refroidissement - eau chaude sanitaire)	Production de froid	yc Groupe de production d'eau glacée Tour de refroidissement, Aéroréfrigérants
	Autres équipements de production : station, systèmes de récupération de chaleur, etc.	
	Emetteurs eau chaude : radiateur eau chaude	y compris leurs auxiliaires (pompes, tuyauterie chaufferie, vase d'expansion, vannes, régulateur intégré, etc.)
	Chauffage à énergie électrique directe à poste fixes visibles	

	Unités de confort : ventilo-convecteurs, poutres climatiques	yc Convecteur, Rayonnant, Radiateur, Sèche serviette
-	Conduits et accessoires de réseaux (pour ventilation, climatisation, chauffage)	réseau à considérer : entre la chaufferie ou les équipements de production et les émetteurs. yc conduits flexibles, rigides, coudes et accessoires yc filtres, grilles, pièges à son, organes d'équilibrage yc les canalisations liées aux systèmes de récupération de chaleur yc calorifugeage des canalisations
	Traitement d'air	yc Centrale de traitement d'air, Centrale double flux, Filtres à air
	Caisson de ventilation	yc VMC simple flux, VMC double flux, Caisson de ventilation
	Diffusion d'air	yc terminaux passifs, Diffuseurs, Entrées d'air, Bouches d'extraction
	Désenfumage	yc Caisson de désenfumage seul Clapets coupe-feu Cartouches coupe-feu ou pare flamme Grilles ou volets de désenfumage
	Réseau gaz intérieur	
	Conduits de fumée	
	Toilettes (ensembles cuvette et chasse), Urinoirs	
	Receveurs de douches, Baignoires	
	Lavabos, Eviers, Fontaines à eau	
	Robinetterie, boutons poussoirs, systèmes économiseurs d'eau	
	Habillage des douches et baignoires, produits d'étanchéité, meubles fixes, miroiterie	ex: portes et parois de cabine de douche, hors faïences murales (dans les revêtements en lot7)
	Meubles sous évier	
955-90 C. (SAR) 35	Ballons de stockage d'ECS	
Installations sanitaires	Installation de traitement des eaux destinées à la consommation humaine	Adoucisseurs, traitements thermiques ou chimiques anti légionellose
	Réseau intérieur eau chaude et eau froide, calorifugeage éventuel	ECS et eau destinée à la consommation humaine
	Réseau intérieur alimenté en eaux pluviales	dans le cas d'un bâtiment avec double réseau, pour l'alimentation des chasses de WC par ex.
	Canalisations d'évacuation des eaux usées et eaux vannes	jusqu'à la sortie du bâtiment (ensuite voir VRD)
10. Réseaux d'énergie (courant fort)	Transformateur électrique	Cela ne concerne pas tous les bâtiments

	Installations et appareillages électriques pour distribution d'énergie électrique	yc tableaux et armoires
	Solutions pour cheminement des câbles	yc protections, fourreaux, gaines, Chemins de câbles, plinthes techniques, goulottes
	Motorisation des portes et volets	
	Paratonnerre	
	Prise de terre et mises à la terre	
	Fils et câbles électriques	
	Eclairage intérieur général;	
	Eclairage intérieur secondaire, d'ambiance et d'appoint;	
	Eclairage d'extérieur général ;	
	Eclairage d'extérieur architectural et décoratif;	
	Réseaux basse tension dédiés à l'éclairage.	
	Installations et appareillages pour réseaux de communication (téléphone, informatique, internet) filaires ou sans fil	yc tableaux et armoires
11. Réseaux de communication	Equipements pour la gestion d'énergie (éclairage, chauffage, ECS, stores et volets / GTC et GTB)	appareils de contrôle-commande réseaux, jusqu'au superviseur
(courant faible)	Fils et câbles de télécommunications	
	Système de détection d'intrusion	yc en sous-sol

	Système de contrôle d'accès	yc en sous-sol
	Système de vidéosurveillance	yc en sous-sol
	Système d'éclairage de sécurité	yc en sous-sol
	Système de sécurité incendie	yc en sous-sol
	Systèmes de contrôle et de régulation de l'éclairage;	
	Solutions pour cheminement des câbles	yc protections, fourreaux, gaines, Chemins de câbles, plinthes techniques, goulottes
12. Appareils	Ascenseurs, monte-charge	yc tous leurs auxiliaires (machinerie, sécurité)
élévateurs et autres équipements de transport	Escaliers mécaniques	idem
intérieur	Nacelles de nettoyage	
13. Equipement de production locale d'électricité	Installation photovoltaïque, éolienne associés au bâtiment	panneaux, onduleur, étanchéité,. yc les supports de fixation. yc câbles électriques et raccordement au réseau

14. Equipements	Fluides médicaux	Réseau de distribution des fluides médicaux
spécifiques au secteur hospitalier	Transport Pneumatique	Réseau de transport pneumatique

5.2. PRISE EN COMPTE DES ZONES DE PROCESS DANS LES CALCULS RT D'AIA

Les zones de process des établissements hospitaliers répondent à deux types d'exigences, et peuvent correspondre à l'un ou l'autre des deux cas n°2 et n°3 définis dans les limites d'application de la RT (Fiche d'application : Limites d'application de la RT2012 au titre de l'article ler, février 2014).

	Cas n°2 Conditions de confort imposées par l'occupation : la RT s'applique hors équipements de process.	Cas n°3 Conditions imposées par le process exclusivement : la RT ne s'applique pas.
Exigences d'asepsie particulières liées à l'acte médical	Unité de soins intensifs	Salles d'opération
Conditions hygrométriques particulières imposées par un équipement de process	Cuisines (lié à restauration)	 Salles d'imagerie médicale Cuisines (circuit de ventilation indépendant)
Prise en compte dans les calculs RT	 Les surfaces concernées sont prises en compte dans la SHON RT Les puissances électriques et les débits de ventilation sont pris égaux à ceux du bâtiment de référence. 	 Les surfaces concernées sont exclues de la SHON RT Seules les parois sont prises en compte : elles sont saisies dans le linéaire d'autres zones Ces zones sont exclues du calcul du Bbio, du Cep, et de la Tic, mais incluses dans le calcul de l'Ubat.

10. ANNEXE 3: LISTES DES DONNEES MANQUANTES

	FDES MANQUAN	ITE	FDES DE SUBSTITU	ITION		QUANTITE		COMMENTAIRE	AVIS CSTB
LOTS HQE PERFORMANCE CONCERNES	Désignation	Unité fonctionnelle	Désignation	Unité fonctionnelle	Justification	valeur pour 1 UF	Estimation de la quantité		
1	Cheminement en stabilisé	1 m²	Sable	Kg	Stabilisé => Sable compacté avec ou sans liant	320	1 m ² => 0,2 m3 de sable/m ² => 320 kg/m ² (masse vol = 1600 kg/m3)		ok
1	Cheminement Alvéolé en Sable	1 m²	Granulats issus de roches massives + FDES Polypropylène	Kg et kg	Composition Fabricant => Polypropylè ne + gravier	1,8 et 80	Données Fabricant => 1 m² => 1,8 kg de PP + 80 kg de Granulats	Fabricant Nidagravel®	ok
1	Béton pour voirie	1 m²	sans objet	sans objet	sans objet		sans objet	Manque d'infos sur l'épaisseur prise en compte.	> FDES pavé de voirie (60mm)
1	Bordures bois	1 ml	Bois massif de structure ext.	1 m3	Bordure type bastaing en bois massif	0,04	Dimensions de Bordure 20*10*200 => 0,04 m3	·	ok (usage exterieur)
1	Clôture panneau rigide (galva)	1 m²	?	?	?	?	?	?	par défaut, bardage acier + approximation au poids.
1	Portail élec ou barrière élec	1 U	?	?	?	?	?	?	a minima le poids d'acier.
1	Bornes amovibles	1 U	?	?	?	?	?	?	a minima le poids d'acier.
1	Séparateurs à Hydrocarbures	1 U	?	?	?	?	?	?	fosse septique béton ou fosse septique PE

1	Séparateurs à graisses	1 U	?	?	?	?	?	?	fosse septique béton ou fosse septique PE
1	Bornes incendie	1 U	?	?	?	?	?	?	a minima le poids d'acier
4	dalles sur plots	1m ²	dalle de toiture terrasse en béton + PVC	m ² et kg	PVC d'après guide de l'expériment ateur dalle toiture terrasse pour remplacer la fiche "pavé de voirie en béton" suggérée dans le guide de l'expériment ateur, qui prend en compte un lit de pose de sable de 4cm d'épaisseur qui semble inadapté ici	1m ² et 6kg			MC : 1m² pavé de voirie + 6kg PVC ok
4	grilles de ventilation	1m2	bardage et couverture acier	m2 et kg	le principal constituant des grilles de ventilation est l'acier	1m2		Pas de données sur la masse d'acier par m2 de grille	hypothèse : 4 kg/m²
4	caillebotis en acier	1m2	acier de ferraillage	kg	selon guide de l'expériment	21kg/m2	selon guide de l'expérimentateur		ok

					ateur				
1	Candélabres	1 U	?	?	?	?	?	?	a minima le poids d'acier.
1	Bornes d'éclairage	1 U	?	?	?	?	?	?	a minima le poids d'acier.
1	Eclairage murale ext.	1 U	?	?	?	?	?	?	pas de PEP.
1	Eclairage de sol ext.	1 U	?	?	?	?	?	?	pas de PEP.
1	Drainage type delta MS	1 m²	Panneau drainant isoldrain	1 m²	Composition semblable	1 m²			ok
8 ; 14	Fourreaux	1 ml	Canalisations PVC	1 ml	selon guide de l'expériment ateur	1ml	selon guide de l'expérimentateur		ok
1	Caniveaux à grille	1 ml	Regards de visite en béton	1 U	selon guide de l'expériment ateur		selon guide de l'expérimentateur		ok
3	Escalier béton préfa	1 U	sans objet	sans objet	selon guide de l'expériment ateur	sans objet	selon guide de l'expérimentateur	Le site internet du guide (dans le cadre d'une quantification par unité) ne fonctionne pas.	?
5;6	Mains courantes	1 ml	Garde corps acier	1 ml		1 ml		PS: La méthode de calcul pour les gardes-corps dans le guide n'est plus à jours (dernière version 2011). FDES gardecorps acier 2012.	attention, le ml de garde corps comprend beaucoup + de matière qu'une main courante. Préferer poids d'acier?

7	plancher chauffant	1m2	treillis soudé : acier de ferraillage chappe flottante : chape fluide Agilia sols C Fib- S tube de cuivre pour distribution d'eau sanitaire	kg m2 ml	d'après guide expérimenta teur compatible plancher chauffant à eau d'après gui de l'expériment ateur	1,25 1,5 5,3	d'après guide expérimentateur épaisseur FDES=4cm, épaisseur CCTP=6cm d'après guide expérimentateur		ok
7	toîle de verre peinte	1m2	produits d'impression et fixateurs en phase aqueuse colle prête à l'emploi pour toîle de verre toîle de verre Peintures satinées et boiseries en phase aqueuse	m2 m2 m2 m2	par défaut par défaut CCTP: peinture satinée aux copolymères acryliques, la FDES couvre Icône Satin de Tollens	1 1 1	correspond à l'UF du macro composant		ok
7	peinture antipoussière	1m2	?	?	?	?	?		FDES peinture pour sols mono composant (aqueuse ou solvant) INIES
4	Lanterneau	1U	??	??	??	??	??	??	hypothése masse PMMA + acier?
7	Plinthes Bois	ml	Parquet en bois massif	1m²		0,07m²	On considère une hauteur de plinthes de 7 cm		ok. Vérifier épaisseur
5	Encadrement menuiserie	ml	Parquet en bois massif	1m²		0,07m²	On considère une largeur des		ok.

	bois						encadrements de 7 cm		
5	Pare Chocs bois	ml	Parquet en bois massif	1m²		0,1m²	On considère une hauteur de Pare chocs de 10 cm		ok.
7	Système de protection à l'eau sous carrelage	1 m²	Etanchéité Asphalte liquide	1 m²		1m²			?
7	Revêtement mural en polyuréthane	1m²	??	??	??	??	??	??	?
9	calorifugeage ARMAFLEX	1ml	??	??	??	??	??	??	voir en fonction de la nature de l'isolant
8	Gaine rectangulaire acier galva	kg	Acier de ferraillage	kg	matériau et unité identique	1 kg			ok
8	ventilo- convecteur	U	??	??	??	??	??	??	pas de PEP.
8	CTA	U	??	??	??	??	??	??	pas de PEP.
8	VMC simple flux	U	??	??	??	??	??	??	ancien PEP partagé à s.lecadre@a-i- a.fr a.morlec@a-i- a.fr e.bussolino@ a-i-a.fr
8	échangeur de production d'ECS (type SPIREC)	U	??	??	??	??	??	??	pas de PEP.
8	pompe de distribution (type	U	??	??	??	??	??	??	pas de PEP.

	SALMSON)								
8	groupe de froid (CARRIER 1200kW)	U	??	??	??	??	??	??	pas de PEP.
9;14	canalisation PVC	ml	Polychlorure de vinyle (PVC)	kg	même matériau (générique)	1400*volumeP VC (en m3)	volume : V=Pi*diamètre*ép aisseur*linéaire	il existe des FDES pour des canalisation PVC, mais le diamètre considéré n'est pas spécifié, il est donc difficile d'adapter la quantité	préciser. Est- ce que "Groupes de production d'eau glacée à condensation par eau et pompe à chaleur" conviendrait?
9	canalisation PE-X	ml	canalisation d'hydrodistribution multicouches	ml	correspond	1?	pas de diamètre indiqué dans la FDES	quantité non adaptable ne fonction du diamètre	FDES vérifiée: canalisation d'hydrodistribu tion PEX PB (diamètre moyen)
9	tube polybutène	ml	??	??	??	??	??	??	approximation tubes polyéthylène
9	Tube Acier Galvanisé	ml	Gaine et tubage acier	ml		lambda*1 ml	avec lambda=diamètre/ 250mm		ok
9	Tube Acier Inoxydable	ml	Gaine et tubage acier	ml		lambda*1 ml	avec lambda=diamètre/ 250mm		ok
9	Evier inox	U	??	??	??	??	??	??	a minima le poids d'acier.
14	câble d'alarme	ml	cuivre	kg	le principal constituant du câble est le cuivre	0,01	ordre de grandeur constaté sur des références de la marque		ok

	1								
							ombilicable		
14	fourreau Galvamediflex	ml	Gaine et tubage acier	ml	fourreau metallique	lambda*1 ml	avec lambda=diamètre/ 250mm		ok
14	gaine technique aluminium (type BGI de Biolume)	ml	couverture et bardage en aluminium	m2		0,5	pas d'infos disponible : ordre de grandeur estimé à partir d'une photo		ok
9	Cabines SDB préfabriquées	1 U	lavabo avec mitigeur robinet mitigeur de douche packs WC (cuvette et réservoir) résine polyester armé en fibre de verre porte PVC	1 U 1 U 1 U kg 1 U		1 U 1 U 1 U 380 kg 1 U	Surface de la cabine préfa = 3m² Hauteur sous-plafonds 2,8 m Epaisseur de la paroie 1 cm de résine polyester + fibre de verre masse volumique de la paroie 1500 kg/m3		ok (erreur dans le MC créé dans SCHUMAN)
1	Cuve à fuel	L	acier de ferraillage	kg	même matériau	8375 kg	poids citerne acier capacité 60 000 L		ok
1	canalisation en grès	ml	??	??	??	??	??	??	approx. Canalisation en béton
10	transformateur électrique	u	??	??	??	??	??	??	pas de PEP.
10	tableau général basse tension	u	??	??	??	??	??	??	pas de PEP.
10	armoire léectrique	u	??	??	??	??	??	??	pas de PEP.

10	câble électrique	ml	cuivre OU Aluminium PVC Polyéthylène haute densité	kg kg kg	selon le type de conducteurs du câble pour gaine pour isolation XLPE	n*Pi*R^2*ro ? ?	volume conducteur*mass e volumique conducteur pas de moyen d'estimation pas de moyen d'estimation		ok. Cable en aluminium?
10	prise de terre générale	ml	cuivre	kg	câble en cuivre nu	0,25868	section 29mm2		ok
1; 2 ET 3	Géotextile	m²	Membrane synthétique étanchéité	m²	géotextile composé d'une membrane synthétique	1m²			ok
2	tapis drainant	m²	hérisson : granulats issus de roches massives géotextile : ? Drains : tuyau de drainage en PVC	kg ? ml	description du tapis drainant dans CCTP	600 ? ?	40cm de grave 20/40, de densité 1,5 ?		ok 1m² 2m FDES tuyau de drainage en PVC
3	Ragréage mural	m²	Ragréage sol souple	m²		1m²			ok
4	Toiture terrasse végétalisée	m²	Toiture terrasse gravillonnée	m²		1m²		Manque FDES sur les bacs végétalisés pour créer le macro- composant.	ok. Vérifier quantité gravier
4	membrane bitume élastomère autoprotégé	m²	bardeaux bitumés	m²		1m²		·	ok
6	lames brise soleil en acier/aluminiu m	m130	ossature : pourtelle en acier lames : tôle acier/couverture et bardage ne	ml m²	CCTP: osssature "métallique" en fonction du matériau	0,5 1,6	d'après le quantitatif de l'entreprise pour l'hôpital de Saint Brieuc		"poutrelle en acier" non appropriée. Préférer un poids d'acier

			aluminium						
4	Pare Vapeur	m²	Membrane synthétique étanchéité	m²		1m²			appliquer un ratio 0,3 (FDES = 1,5kg/m²!!)
5	Pare Chocs élastomère	ml	??	??	??	??	??	??	Caoutchouc (kg)
6	Bardage acier perforé	m²	Plateau de bardage en acier	m²	même matériau	1m²			ok. Vérifier épaisseur. Hypothèse pour un ratio /perforation
5	Cloison type 120/70	m²	Cloison type 98/48	m²		1m²			application ratio 1,3
7	Peinture Bactéricide	m²	??	??	??	??	??	??	peinture
8	Gaines souples	ml	??	??	??	??	??	??	quel matériaux/pou r quel usage? Ou approximation poids polyéthylène.
8	Calorifugeage polystyrène	m²	ISOVER episol 23 mm	m²	même matériau et épaisseur identique	1m²	??	??	?
9	WC	U	Lavabo en porcelaine de 60 cm et sa colonne, sans robinetterie ni vidage	U	matériau principal : porcelaine	2,4	rapport des masses médianes considérées dans les deux fiches	on n'utilise pas le fiche Pack WC (cuvette et réservoir) en porcelaine avec son mécanisme et son abattant	créer une fiche ELODIE, recopier les impacts de la FDES en supprimant l'impact conso d'eau module

								car elle comptabilise l'eau utilisée dans la vie en œuvre, que l'on comptabilise déjà dans le contributeur eau	В
11	Fibre Optique	ml	??	??	??	??	??	??	?

L'Association HQE - France GBC

Résultat de la fusion des 2 associations le 21 juin 2016, l'Association HQE – France GBC, reconnue d'utilité publique est le catalyseur d'un mouvement collectif d'hommes et de femmes engagés dans le développement durable des bâtiments, des aménagements et des infrastructures au bénéfice des individus, des collectivités et des entreprises.

Par les démarches volontaires qu'elle suscite en France et à l'international, l'Association HQE – France GBC agit dans l'intérêt général pour anticiper, innover, améliorer les connaissances et diffuser les bonnes pratiques.

Elle est à l'écoute de toutes les parties prenantes et privilégie le travail collaboratif en réseau pour démultiplier son action et favoriser les échanges de proximité.

L'Association HQE-France GBC est notamment le membre français du World Green Building Council, association mondiale regroupant des professionnels engagés dans la construction durable dans plus de 100 pays.

Plus d'informations : www.hqegbc.org

